예제 #1
0
    def solve(self):
        """
        Solves the matching problem and returns a solution if possible.
        If problem is impossible, raises a ValueError
        """
        logger.debug(f"Creating Solver!")
        if self.use_gurobi:
            solver = pylp.create_linear_solver(pylp.Preference.Gurobi)
            # set num threads sometimes causes an error. See issue #5 on
            # github.com/funkey/pylp
            # solver.set_num_threads(1)
        else:
            solver = pylp.create_linear_solver(pylp.Preference.Scip)
            # don't set num threads. It leads to a core dump
        solver.initialize(self.num_variables, pylp.VariableType.Binary)
        solver.set_timeout(self.timeout)

        solver.set_objective(self.objective)

        logger.debug(f"Starting Solve: {self.num_variables} indicators "
                     f"and {self.num_constraints} constraints!")

        solver.set_constraints(self.constraints)
        solution, message = solver.solve()
        logger.debug(f"Finished solving!, got message ({message})")
        if "NOT" in message and not "feasible solutions found" in message:
            raise ValueError(message)

        return solution
예제 #2
0
def gurobi_installed_with_license():
    try:
        solver = pylp.create_linear_solver(pylp.Preference.Gurobi)
        solver.initialize(1, pylp.VariableType.Binary)
        objective = pylp.LinearObjective(1)
        objective.set_coefficient(1, 1)
        solver.set_objective(objective)
        constraints = pylp.LinearConstraints()
        solver.set_constraints(constraints)
        solution, message = solver.solve()
        success = True
    except RuntimeError:
        success = False

    return pytest.mark.skipif(not success, reason="Requires Gurobi License")
예제 #3
0
파일: split.py 프로젝트: funkelab/synister
def find_optimal_split(synapse_ids,
                       superset_by_synapse_id,
                       nt_by_synapse_id,
                       neurotransmitters,
                       supersets,
                       train_fraction=0.8,
                       ensure_non_empty=True):
    """Find optimal synapse split per neurotransmitter 
       and synapse superset (e.g. hemi lineage/neuron/brain region)

    Args:

        synapse_ids (List):

            Synapse ids to consider
        
        superset_by_synapse_id (dict):

            Mapping from each synapse_id in synapse_ids to its
            associated superset.

        nt_by_synapse_id (dict):

            Mapping from each synapse_id in synapse_ids to
            its associated nt.

        neurotransmitters (List of tuples):

            List of neurotransmitters to consider.

        supersets (List of objects):

            List of supersets to consider.

        train_fraction (float):

            Fraction of synapses to assign to training
    """

    # Constuct combined dict:
    synapses_by_superset_and_nt = {(ss, nt): []
                                   for ss in supersets
                                   for nt in neurotransmitters}

    synapse_ids_by_nt = {nt: [] for nt in neurotransmitters}
    for synapse_id in synapse_ids:
        ss = superset_by_synapse_id[synapse_id]
        nt = nt_by_synapse_id[synapse_id]
        synapses_by_superset_and_nt[(ss, nt)].append(synapse_id)
        synapse_ids_by_nt[nt].append(synapse_id)

    # find optimal 80/20 split

    num_variables = 0
    train_indicators = {}
    target = {}
    sum_synapses = {}
    slack_u = {}
    slack_l = {}
    constraints = pylp.LinearConstraints()

    # for each NT:
    for nt in neurotransmitters:

        # compute target value: target_NT
        target[nt] = int(train_fraction * len(synapse_ids_by_nt[nt]))

        # let s_NT be sum of synapses in training for NT
        sum_synapses[nt] = num_variables
        num_variables += 1

        # measure distance to target_NT: d_NT = s_NT - target_NT
        sum_constraint = pylp.LinearConstraint()

        # for each HL:
        for ss in supersets:

            # add indicator for using (HL, NT) in train: i_HL_NT
            i = num_variables
            num_variables += 1
            train_indicators[(ss, nt)] = i

            # i_HL_NT * #_of_synapses...
            sum_constraint.set_coefficient(
                i, len(synapses_by_superset_and_nt[(ss, nt)]))

        # ... - s_NT = 0
        sum_constraint.set_coefficient(sum_synapses[nt], -1)
        sum_constraint.set_relation(pylp.Relation.Equal)
        sum_constraint.set_value(0)
        constraints.add(sum_constraint)

        # add two slack variables for s_NT:
        slack_u[nt] = num_variables
        num_variables += 1
        slack_l[nt] = num_variables
        num_variables += 1

        # su_NT ≥  d_NT = s_NT - target_NT              su_NT ≥ 0
        # target_NT ≥  d_NT - su_NT = s_NT - su_NT      su_NT ≥ 0

        # sl_NT ≥ -d_NT = target_NT - s_NT              sl_NT ≥ 0
        # -target_NT ≥ -d_NT - sl_NT = -s_NT - sl_NT    sl_NT ≥ 0

        slack_constraint_u = pylp.LinearConstraint()
        slack_constraint_l = pylp.LinearConstraint()
        slack_constraint_u_0 = pylp.LinearConstraint()
        slack_constraint_l_0 = pylp.LinearConstraint()

        slack_constraint_u.set_coefficient(sum_synapses[nt], 1)
        slack_constraint_u.set_coefficient(slack_u[nt], -1)
        slack_constraint_u.set_relation(pylp.Relation.LessEqual)
        slack_constraint_u.set_value(target[nt])

        slack_constraint_u_0.set_coefficient(slack_u[nt], 1)
        slack_constraint_u_0.set_relation(pylp.Relation.GreaterEqual)
        slack_constraint_u_0.set_value(0)

        slack_constraint_l.set_coefficient(sum_synapses[nt], -1)
        slack_constraint_l.set_coefficient(slack_l[nt], -1)
        slack_constraint_l.set_relation(pylp.Relation.LessEqual)
        slack_constraint_l.set_value(-target[nt])

        slack_constraint_l_0.set_coefficient(slack_l[nt], 1)
        slack_constraint_l_0.set_relation(pylp.Relation.GreaterEqual)
        slack_constraint_l_0.set_value(0)

        constraints.add(slack_constraint_u)
        constraints.add(slack_constraint_l)
        constraints.add(slack_constraint_u_0)
        constraints.add(slack_constraint_l_0)

    # ensure that either all or none of the NTs per hemi-lineages are used for
    # training
    for ss in supersets:

        prev_nt = None
        for nt in neurotransmitters:

            if prev_nt is not None:

                joint_constraint = pylp.LinearConstraint()

                joint_constraint.set_coefficient(
                    train_indicators[(ss, prev_nt)], 1)
                joint_constraint.set_coefficient(train_indicators[(ss, nt)],
                                                 -1)
                joint_constraint.set_relation(pylp.Relation.Equal)
                joint_constraint.set_value(0)

                constraints.add(joint_constraint)

            prev_nt = nt

    # Ensure that at least one superset is in test for each nt
    if ensure_non_empty:
        for nt in neurotransmitters:
            non_zero_constraint = pylp.LinearConstraint()
            non_one_constraint = pylp.LinearConstraint()

            # Compute number of supersets in nt:
            non_zero_ss = 0
            for ss in supersets:
                if synapses_by_superset_and_nt[(ss, nt)]:
                    non_zero_ss += 1

            # If there are more than one superset
            # require that the number of supersets
            # in test and train is at least 1
            if non_zero_ss > 1:
                for ss in supersets:
                    if synapses_by_superset_and_nt[(ss, nt)]:
                        non_zero_constraint.set_coefficient(
                            train_indicators[(ss, nt)], 1)
                        non_one_constraint.set_coefficient(
                            train_indicators[(ss, nt)], 1)

                non_zero_constraint.set_relation(pylp.Relation.GreaterEqual)
                non_zero_constraint.set_value(1)

                non_one_constraint.set_relation(pylp.Relation.LessEqual)
                non_one_constraint.set_value(non_zero_ss - 1)

                constraints.add(non_zero_constraint)
                constraints.add(non_one_constraint)

    # add sl_NT + su_NT to objective
    objective = pylp.LinearObjective(num_variables)
    for nt in neurotransmitters:
        objective.set_coefficient(slack_u[nt], 1. / target[nt])
        objective.set_coefficient(slack_l[nt], 1. / target[nt])

    variable_types = pylp.VariableTypeMap()
    for nt in neurotransmitters:
        variable_types[slack_u[nt]] = pylp.VariableType.Integer
        variable_types[slack_l[nt]] = pylp.VariableType.Integer
        variable_types[sum_synapses[nt]] = pylp.VariableType.Integer

    solver = pylp.create_linear_solver(pylp.Preference.Gurobi)
    solver.initialize(num_variables, pylp.VariableType.Binary, variable_types)

    solver.set_objective(objective)
    solver.set_constraints(constraints)
    solution, msg = solver.solve()

    print(msg)

    train_synapses_by_ss = {}
    test_synapses_by_ss = {}

    for nt in neurotransmitters:

        print(nt,
              float(solution[sum_synapses[nt]]) / len(synapse_ids_by_nt[nt]),
              "% ", solution[sum_synapses[nt]], '/',
              len(synapse_ids_by_nt[nt]), '(', target[nt], ')')

        for ss in supersets:
            if len(synapses_by_superset_and_nt[(ss, nt)]) > 0:
                if solution[train_indicators[(ss, nt)]] > 0.5:

                    if ss in list(train_synapses_by_ss):
                        pass
                    else:
                        train_synapses_by_ss[ss] = []

                    train_synapses_by_ss[ss].extend(
                        synapses_by_superset_and_nt[(ss, nt)])
                    print('+', ss)
                else:
                    if ss in list(test_synapses_by_ss):
                        pass
                    else:
                        test_synapses_by_ss[ss] = []

                    test_synapses_by_ss[ss].extend(
                        synapses_by_superset_and_nt[(ss, nt)])
                    print('-', ss)

    return train_synapses_by_ss, test_synapses_by_ss
예제 #4
0
파일: solver.py 프로젝트: nilsec/micron
    def initialize(self):
        logger.info("Creating Indicators...")
        start_time = time.time()
        self.__create_indicators()
        logger.info("...took %s seconds" % (time.time() - start_time))

        logger.info("Getting continuation constraints...")
        start_time = time.time()
        self.__get_continuation_constraints()
        logger.info("...took %s seconds" % (time.time() - start_time))

        logger.info("Setting objective...")
        start_time = time.time()
        self.backend = pylp.create_linear_solver(pylp.Preference.Gurobi)
        self.backend.initialize(self.n_triplets, pylp.VariableType.Binary)
        self.backend.set_num_threads(1)
        self.objective = pylp.LinearObjective(self.n_triplets)
        self.constraints = pylp.LinearConstraints()

        for t in self.triplets.keys():
            self.objective.set_coefficient(t, self.get_cost(t))

            constraint = pylp.LinearConstraint()
            if t in self.t_selected:
                constraint.set_coefficient(t, 1)
                constraint.set_relation(pylp.Relation.Equal)
                constraint.set_value(1)
                self.constraints.add(constraint)

        self.backend.set_objective(self.objective)
        logger.info("...took %s seconds" % (time.time() - start_time))

        logger.info("Setting center conflicts...")
        start_time = time.time()
        for conflict in self.t_center_conflicts:
            constraint = pylp.LinearConstraint()

            all_solved = True
            for t in conflict:
                if not t in self.t_solved:
                    all_solved = False
                constraint.set_coefficient(t, 1)

            if not all_solved:
                constraint.set_relation(pylp.Relation.LessEqual)
                constraint.set_value(1)
                self.constraints.add(constraint)
        logger.info("...took %s seconds" % (time.time() - start_time))

        logger.info("Setting continuation constraints...")
        start_time = time.time()
        for continuation_constraint in self.continuation_constraints:
            t_l = continuation_constraint["t_l"]
            t_r = continuation_constraint["t_r"]

            all_solved = np.all([t in self.t_solved for t in (t_l + t_r)])
            if not all_solved:
                constraint = pylp.LinearConstraint()
                for t in t_l:
                    constraint.set_coefficient(t, 1)
                for t in t_r:
                    constraint.set_coefficient(t, -1)

                constraint.set_relation(pylp.Relation.Equal)
                constraint.set_value(0)
                self.constraints.add(constraint)
        logger.info("...took %s seconds" % (time.time() - start_time))

        logger.info("Setting must pick one constraints...")
        start_time = time.time()
        for must_pick_one in self.e_selected + self.v_selected:
            constraint = pylp.LinearConstraint()
            if must_pick_one:
                for t in must_pick_one:
                    constraint.set_coefficient(t, 1)

                constraint.set_relation(pylp.Relation.GreaterEqual)
                constraint.set_value(1)
                self.constraints.add(constraint)

        self.backend.set_constraints(self.constraints)
        logger.info("...took %s seconds" % (time.time() - start_time))
예제 #5
0
파일: g1_solver.py 프로젝트: nilsec/mtrack
    def __init__(self,
                 g1,
                 distance_factor,
                 orientation_factor,
                 start_edge_prior,
                 comb_angle_factor,
                 vertex_selection_cost,
                 backend="Gurobi"):

        if backend == "Gurobi":
            logger.info("Use Gurobi backend")
            self.backend = pylp.create_linear_solver(pylp.Preference.Gurobi)
        elif backend == "Scip":
            logger.info("Use Scip backend")
            self.backend = pylp.create_linear_solver(pylp.Preference.Scip)
        else:
            raise NotImplementedError("Choose between Gurobi or Scip backend")
        g1.reindex_edges_save()
        self.g1 = g1

        self.distance_factor = distance_factor
        self.orientation_factor = orientation_factor
        self.start_edge_prior = start_edge_prior
        self.comb_angle_factor = comb_angle_factor
        self.vertex_selection_cost = vertex_selection_cost

        self.vertex_cost = g1.get_vertex_cost()

        self.edge_cost = g1.get_edge_cost(distance_factor, orientation_factor,
                                          start_edge_prior)

        self.edge_combination_cost, self.edges_to_middle =\
            g1.get_edge_combination_cost(comb_angle_factor=comb_angle_factor,
                                         return_edges_to_middle=True)

        self.n_vertices = g1.get_number_of_vertices()
        self.n_dummy = self.n_vertices
        self.n_edges = g1.get_number_of_edges() + self.n_dummy
        self.n_comb_edges = len(self.edge_combination_cost)

        # Variables are vertices, edges and combination of egdes
        self.n_variables = self.n_vertices + self.n_edges + self.n_comb_edges

        self.backend.initialize(self.n_variables, pylp.VariableType.Binary)

        self.objective = pylp.LinearObjective(self.n_variables)
        """
        Set costs
        """

        binary_id = 0
        # Add one variable for each vertex (selection cost only for mt's)
        self.vertex_to_binary = {}
        self.binary_to_vertex = {}
        for v in g1.get_vertex_iterator():
            self.objective.set_coefficient(binary_id,
                                           self.vertex_selection_cost +\
                                           self.vertex_cost[v])

            self.vertex_to_binary[v] = binary_id
            self.binary_to_vertex[binary_id] = v
            binary_id += 1

        assert (binary_id == self.n_vertices)

        # Add one variable for each edge
        self.edge_to_binary = {}
        self.binary_to_edge = {}
        for e in g1.get_edge_iterator():
            self.objective.set_coefficient(binary_id, self.edge_cost[e])
            self.edge_to_binary[e] = binary_id
            self.binary_to_edge[binary_id] = e
            binary_id += 1

        # Add one dummy edge for each vertex
        self.dummy_to_binary = {}
        self.binary_to_dummy = {}
        for v in g1.get_vertex_iterator():
            self.objective.set_coefficient(binary_id,
                                           self.edge_cost[G1.START_EDGE])

            self.dummy_to_binary[v] = binary_id
            self.binary_to_dummy[binary_id] = v
            binary_id += 1
        assert (binary_id == self.n_vertices + self.n_edges)

        # Add one variable for each combination of edges:
        self.comb_to_binary = {}
        self.binary_to_comb = {}
        for ee, cost in self.edge_combination_cost.iteritems():
            self.objective.set_coefficient(binary_id, cost)

            self.comb_to_binary[ee] = binary_id
            self.binary_to_comb[binary_id] = ee
            binary_id += 1
        assert (binary_id == self.n_variables)

        self.backend.set_objective(self.objective)
        """
        Constraints
        """
        self.constraints = pylp.LinearConstraints()

        # Edge selection implies vertex selection:
        for e in g1.get_edge_iterator():
            v0 = e.source()
            v1 = e.target()

            constraint = pylp.LinearConstraint()
            constraint.set_coefficient(self.edge_to_binary[e], 2)
            constraint.set_coefficient(self.vertex_to_binary[v0], -1)
            constraint.set_coefficient(self.vertex_to_binary[v1], -1)
            constraint.set_relation(pylp.Relation.LessEqual)
            constraint.set_value(0)

            self.constraints.add(constraint)

        # Vertex selection implies 2 edges:
        for v in g1.get_vertex_iterator():
            incident_edges = g1.get_incident_edges(v)

            constraint = pylp.LinearConstraint()
            constraint.set_coefficient(self.vertex_to_binary[v], 2)

            constraint.set_coefficient(self.dummy_to_binary[v], -1)
            for e in incident_edges:
                constraint.set_coefficient(self.edge_to_binary[e], -1)

            constraint.set_relation(pylp.Relation.Equal)
            constraint.set_value(0)

            self.constraints.add(constraint)

        # Combination of 2 edges implies edges and vice versa:
        for ee in self.edge_combination_cost.keys():
            e0 = ee[0]
            e1 = ee[1]

            assert (e0 != G1.START_EDGE or e1 != G1.START_EDGE)

            if e0 == G1.START_EDGE:
                middle_vertex = self.edges_to_middle[ee]
                b0 = self.dummy_to_binary[middle_vertex]
                b1 = self.edge_to_binary[e1]

            elif e1 == G1.START_EDGE:
                middle_vertex = self.edges_to_middle[ee]
                b0 = self.edge_to_binary[e0]
                b1 = self.dummy_to_binary[middle_vertex]

            else:
                b0 = self.edge_to_binary[e0]
                b1 = self.edge_to_binary[e1]

            constraint = pylp.LinearConstraint()
            constraint.set_coefficient(self.comb_to_binary[ee], 2)
            constraint.set_coefficient(b0, -1)
            constraint.set_coefficient(b1, -1)
            constraint.set_relation(pylp.Relation.LessEqual)
            constraint.set_value(0)

            self.constraints.add(constraint)

            # Edges implies combination:
            constraint = pylp.LinearConstraint()
            constraint.set_coefficient(b0, 1)
            constraint.set_coefficient(b1, 1)
            constraint.set_coefficient(self.comb_to_binary[ee], -1)
            constraint.set_relation(pylp.Relation.LessEqual)
            constraint.set_value(1)

            self.constraints.add(constraint)

        # Add partner constraints:
        for v in g1.get_vertex_iterator():
            partner = g1.get_partner(v)
            if partner != -1:
                if v < partner:
                    constraint = pylp.LinearConstraint()
                    constraint.set_coefficient(self.vertex_to_binary[v], 1)
                    constraint.set_coefficient(self.vertex_to_binary[partner],
                                               1)
                    constraint.set_relation(pylp.Relation.LessEqual)
                    constraint.set_value(1)
                    self.constraints.add(constraint)

        self.backend.set_constraints(self.constraints)
예제 #6
0
파일: g2_solver.py 프로젝트: nilsec/mtrack
    def __init__(self, g2, backend="Gurobi"):
        self.g2_vertices_N = g2.get_number_of_vertices()

        if backend == "Gurobi":
            logger.info("Use Gurobi backend")
            self.backend = pylp.create_linear_solver(pylp.Preference.Gurobi)
        elif backend == "Scip":
            logger.info("Use Scip backend")
            self.backend = pylp.create_linear_solver(pylp.Preference.Scip)
        else:
            raise NotImplementedError("Choose between Gurobi or Scip backend")

        self.backend.initialize(self.g2_vertices_N, pylp.VariableType.Binary)
        self.backend.set_num_threads(1)
        self.objective = pylp.LinearObjective(self.g2_vertices_N)

        #pylp.set_log_level(pylp.LogLevel.Debug)

        g2_vertex_index_map = g2.get_vertex_index_map()
        self.constraints = pylp.LinearConstraints()

        for v in g2.get_vertex_iterator():
            self.objective.set_coefficient(g2_vertex_index_map[v],
                                           g2.get_cost(v))

            constraint = pylp.LinearConstraint()
            if g2.get_forced(v):
                constraint.set_coefficient(v, 1)
                constraint.set_relation(pylp.Relation.Equal)
                constraint.set_value(1)
                self.constraints.add(constraint)

        self.backend.set_objective(self.objective)

        for conflict in g2.get_conflicts():

            constraint = pylp.LinearConstraint()

            all_solved = True
            for v in conflict:
                if not g2.get_solved(v):
                    all_solved = False
                constraint.set_coefficient(v, 1)

            if not all_solved:
                constraint.set_relation(pylp.Relation.LessEqual)
                constraint.set_value(1)
                self.constraints.add(constraint)

        for sum_constraint in g2.get_sum_constraints():

            vertices_1 = sum_constraint[0]
            vertices_2 = sum_constraint[1]

            constraint = pylp.LinearConstraint()

            for v in vertices_1:
                constraint.set_coefficient(v, 1)
            for v in vertices_2:
                constraint.set_coefficient(v, -1)

            all_solved = True
            for v in vertices_1 + vertices_2:
                if not g2.get_solved(v):
                    all_solved = False
                    break

            if not all_solved:
                constraint.set_relation(pylp.Relation.Equal)
                constraint.set_value(0)
                self.constraints.add(constraint)

        for must_pick_one in g2.get_must_pick_one():
            constraint = pylp.LinearConstraint()

            if must_pick_one:
                for v in must_pick_one:
                    constraint.set_coefficient(v, 1)

                constraint.set_relation(pylp.Relation.GreaterEqual)
                constraint.set_value(1)
                self.constraints.add(constraint)

        self.backend.set_constraints(self.constraints)
예제 #7
0
    def __init__(self, graph_in, classA, classB, classC):

        self.graph = graph_in

        #n_vertices = graph.get_num_vertices()
        self.backend = pylp.create_linear_solver(pylp.Preference.Scip)
        #self.graph = graph
        #vertices = graph.vertices
        NUM_LEAVES = len(self.graph.nodes[0]['cost'])
        NUM_GRAPH_NODES = len(self.graph.nodes)
        NUM_GRAPH_EDGES = len(self.graph.edges)
        NUM_SOLVER_COEFF = NUM_GRAPH_NODES * NUM_LEAVES + NUM_GRAPH_EDGES

        GRAPH_NODES = list(self.graph.nodes)
        GRAPH_EDGES = list(self.graph.edges)
        self.backend.initialize(NUM_SOLVER_COEFF, pylp.VariableType.Binary)

        # backend.set_num_threads(1)
        objective = pylp.LinearObjective(NUM_SOLVER_COEFF)

        print('adding objective node coefficients')
        #add variables to objective per vertex
        id = 0
        self.vertex_id = []
        self.vertex_class_id = []
        for v in GRAPH_NODES:
            leaf_id = []
            class_id = []
            for leaf in range(NUM_LEAVES):
                objective.set_coefficient(
                    id, -1 * self.graph.nodes[v]['cost'][leaf])
                leaf_id.append(id)
                id += 1
            # add indicator variables for class A,B,C as well
            for c in range(3):
                objective.set_coefficient(id, 1)
                class_id.append(id)
                id += 1
            self.vertex_id.append(leaf_id)
            self.vertex_class_id.append(class_id)

        assert (id == NUM_GRAPH_NODES * NUM_LEAVES)

        print('adding objective edge coefficients')
        self.edge_nodes = []
        self.obj_edge_id = []
        for e in GRAPH_EDGES:
            objective.set_coefficient(id, 1)
            self.edge_nodes.append(e)
            self.obj_edge_id.append(id)
            id += 1

        assert (id == NUM_SOLVER_COEFF)

        # #add variables to objective per vertex
        # binary_id = 0
        # vertex_to_binary = {}
        # binary_to_vertex = {}
        # for v in g1.get_vertex_iterator():
        #     objective.set_coefficient(binary_id,graph[v])
        #
        #     vertex_to_binary[v] = binary_id
        #     binary_to_vertex[binary_id] = v
        #     binary_id += 1
        #
        # assert (binary_id == n_vertices)

        # #add variables to objective per edge
        # edge_to_binary = {}
        # binary_to_edge = {}
        # for e in g1.get_edge_iterator():
        #     objective.set_coefficient(binary_id,
        #                                 edge_cost[e])
        #     edge_to_binary[e] = binary_id
        #     binary_to_edge[binary_id] = e
        #     binary_id += 1
        # assert(binary_id == n_vertices + n_edges)
        #
        # self.backend.set_objective(objective)

        print('adding constraints')

        self.constraints = pylp.LinearConstraints()

        #add node constraints: binary, one leaf per node
        for v in self.vertex_id:
            constraintV = pylp.LinearConstraint()
            for l in v:
                constraint1 = pylp.LinearConstraint()
                constraint2 = pylp.LinearConstraint()

                constraint1.set_coefficient(l, 1)
                constraint1.set_relation(pylp.Relation.GreaterEqual)
                constraint1.set_value(0)

                constraint2.set_coefficient(l, 1)
                constraint2.set_relation(pylp.Relation.LessEqual)
                constraint2.set_value(1)

                constraintV.set_coefficient(l, 1)

                self.constraints.add(constraint1)
                self.constraints.add(constraint2)

            constraintV.set_relation(pylp.Relation.Equal)
            constraintV.set_value(1)
            self.constraints.add(constraintV)

        #add node constraints: binary, one class per node (redundant?)
        for v in self.vertex_class_id:
            constraintV = pylp.LinearConstraint()
            for l in v:
                constraint1 = pylp.LinearConstraint()
                constraint2 = pylp.LinearConstraint()

                constraint1.set_coefficient(l, 1)
                constraint1.set_relation(pylp.Relation.GreaterEqual)
                constraint1.set_value(0)

                constraint2.set_coefficient(l, 1)
                constraint2.set_relation(pylp.Relation.LessEqual)
                constraint2.set_value(1)

                constraintV.set_coefficient(l, 1)

                self.constraints.add(constraint1)
                self.constraints.add(constraint2)

            constraintV.set_relation(pylp.Relation.Equal)
            constraintV.set_value(1)
            self.constraints.add(constraintV)

        #add node constraints: node leaf sets node class
        for v in self.vertex_id:
            constraintA = pylp.LinearConstraint()
            for a in classA:
                constraintA.set_coefficient(v[a], 1)
            constraintA.set_coefficient(self.vertex_class_id[0], -1)
            constraintA.set_relation(pylp.Relation.Equal)
            constraintA.set_value(0)

            constraintB = pylp.LinearConstraint()
            for b in classB:
                constraintB.set_coefficient(v[b], 1)
            constraintB.set_coefficient(self.vertex_class_id[1], -1)
            constraintB.set_relation(pylp.Relation.Equal)
            constraintB.set_value(0)

            constraintC = pylp.LinearConstraint()
            for c in classC:
                constraintC.set_coefficient(v[c], 1)
            constraintC.set_coefficient(self.vertex_class_id[2], -1)
            constraintC.set_relation(pylp.Relation.Equal)
            constraintC.set_value(0)

            self.constraints.add(constraintA)
            self.constraints.add(constraintB)
            self.constraints.add(constraintC)

        #add edge constraints: edge can't span class A(lumen) to class C(cytosol)
        #TODO: double check
        for e in GRAPH_EDGES:
            constraint_orderF = pylp.LinearConstraint()
            constraint_orderR = pylp.LinearConstraint()
            start_idx = GRAPH_NODES.index(e[0])
            end_idx = GRAPH_NODES.index(e[1])

            constraint_orderF.add_coefficient(
                self.vertex_class_id[start_idx][0], 1)
            constraint_orderF.add_coefficient(self.vertex_class_id[end_idx][2],
                                              1)
            constraint_orderF.add_relation(pylp.Relation.Equal)
            constraint_orderF.add_value(0)
            self.constraints.add(constraint_orderF)

            constraint_orderR.add_coefficient(
                self.vertex_class_id[start_idx][2], 1)
            constraint_orderR.add_coefficient(self.vertex_class_id[end_idx][0],
                                              1)
            constraint_orderR.add_relation(pylp.Relation.Equal)
            constraint_orderR.add_value(0)
            self.constraints.add(constraint_orderR)

        #TODO: add constraint edges with different classes are cut

        # #Edge selection implies vertex selection
        # for e in g1.get_edge_iterator():
        #     v0 = e.source()
        #     v1 = e.target()
        #
        #     #TODO: XOR logic?
        #     constraint = pylp.LinearConstraint()
        #     constraint.set_coefficient(edge_to_binary[e], 2)
        #     constraint.set_coefficient(vertex_to_binary[v0], -1)
        #     constraint.set_coefficient(vertex_to_binary[v1], -1)
        #     constraint.set_relation(pylp.Relation.LessEqual)
        #     constraint.set_value(0)

        self.backend.set_objective(objective)
        self.backend.set_constraints(self.constraints)
예제 #8
0
파일: match.py 프로젝트: nilsec/comatch
def match_components(nodes_x,
                     nodes_y,
                     edges_xy,
                     node_labels_x,
                     node_labels_y,
                     allow_many_to_many=False,
                     edge_costs=None,
                     no_match_costs=0,
                     edge_conflicts=None):
    '''Match nodes from X to nodes from Y by selecting candidate edges x <-> y,
    such that the split/merge error induced from the labels for X and Y is
    minimized.

    Example::

        X:     Y:

        1      a
        |      |
        2      b
        |       \
        3      h c
        |      | |
        4    C i d
        |      | |
        5      j e
        |       /
        6      f
        |      |
        7      g

        A      B

    1-7: nodes in X labelled A; a-g: nodes in Y labelled B; h-j: nodes in Y
    labelled C.

    Assuming that all nodes in X can be matched to all nodes in Y in the same
    line (``edges_xy`` would be (1, a), (2, b), (3, h), (3, c), and so on), the
    solution would be to match:

        1 - a
        2 - b
        3 - c
        4 - d
        5 - e
        6 - f
        7 - g

    h, i, and j would remain unmatched, since matching them would incur a split
    error of A into B and C.

    Args:

        nodes_x, nodes_y (array-like of ``int``):

            A list of IDs of set X and Y, respectively.

        edges_xy (array-like of tuple):

            A list of tuples ``(id_x, id_y)`` of matching edges to chose from.

        node_labels_x, node_labels_y (``dict``):

            A dictionary from IDs to labels.

        allow_many_to_many (``bool``, optional):

            If ``True``, allow that one node in X can match to multiple nodes
            in Y and vice versa. Default is ``False``.

        edge_costs (array-like of ``float``, optional):

            If given, defines a preference for selecting edges from
            ``edges_xy`` by contributing costs ``edge_costs[i]`` for edge
            ``edges_xy[i]``.

            The edge costs form a secondary objective, i.e., the matching is
            still performed to minimize the total number of errors (splits,
            merges, FPs, and FNs). However, for matching problems where several
            solutions exist with the same number of errors, the edge costs
            define a preference (e.g., by favouring matches between nodes that
            are spatially close, if the edge costs represent distances).

            See also ``no_match_costs``.

        no_match_costs (``float``, optional):

            A cost for not matching a node either in X or Y. Complementary to
            ``edge_costs``.

        edge_conflicts(``list of lists of tuples (id_x, id_y)`` of edges_xy, optional):
            Each list in edge conflicts should contain edges_xy that are in conflict
            with each other. That is for each set of edges edge_conflicts[i] only one edge
            is picked.

    Returns:

        (label_matches, node_matches, num_splits, num_merges, num_fps, num_fns)

        ``label_matches``: A list of tuples ``(label_x, label_y)`` of labels
        that got matched.

        ``node_matches``: A list of tuples ``(id_x, id_y)`` of nodes that got
        matched. Subset of ``edges_xy``.

        ``num_splits``, ``num_merges``, ...: The number of label splits,
        merges, false positives (unmatched in X), and false negatives
        (unmatched in Y).
    '''

    if edge_costs is None and no_match_costs != 0:
        edge_costs = [0] * len(edges_xy)

    num_vars = 0

    # add "no match in X" and "no match in Y" dummy nodes
    no_match_node = max(nodes_x + nodes_y) + 1
    no_match_label = max(max(node_labels_x.keys()), max(
        node_labels_y.keys())) + 1

    node_labels_x = dict(node_labels_x)
    node_labels_y = dict(node_labels_y)
    node_labels_x.update({no_match_node: no_match_label})
    node_labels_y.update({no_match_node: no_match_label})

    labels_x = set(node_labels_x.values())
    labels_y = set(node_labels_y.values())

    # add additional edges to dummy nodes
    edges_xy += [(n, no_match_node) for n in nodes_x]
    edges_xy += [(no_match_node, n) for n in nodes_y]

    # create indicator for each matching edge
    edge_indicators = {}
    edges_by_node_x = {}
    edges_by_node_y = {}
    for edge in edges_xy:
        edge_indicators[edge] = num_vars
        num_vars += 1
        u, v = edge
        if u not in edges_by_node_x:
            edges_by_node_x[u] = []
        if v not in edges_by_node_y:
            edges_by_node_y[v] = []
        edges_by_node_x[u].append(edge)
        edges_by_node_y[v].append(edge)

    # Require that each node matches to exactly one (or at least one, depending
    # on the allow_many_to_many parameter) other node. Dummy nodes can match to
    # any number.

    constraints = pylp.LinearConstraints()

    for nodes, edges_by_node in zip([nodes_x, nodes_y],
                                    [edges_by_node_x, edges_by_node_y]):

        for node in nodes:

            if node == no_match_node:
                continue

            constraint = pylp.LinearConstraint()
            for edge in edges_by_node[node]:
                constraint.set_coefficient(edge_indicators[edge], 1)
            if allow_many_to_many:
                constraint.set_relation(pylp.Relation.GreaterEqual)
            else:
                constraint.set_relation(pylp.Relation.Equal)
            constraint.set_value(1)
            constraints.add(constraint)

    # add indicators for label matches

    label_indicators = {}
    edges_by_label_pair = {}

    for edge in edges_xy:

        label_pair = node_labels_x[edge[0]], node_labels_y[edge[1]]

        if label_pair not in label_indicators:
            label_indicators[label_pair] = num_vars
            num_vars += 1

        if label_pair not in edges_by_label_pair:
            edges_by_label_pair[label_pair] = []
        edges_by_label_pair[label_pair].append(edge)

    label_indicators[(no_match_label, no_match_label)] = num_vars
    num_vars += 1

    # couple label indicators to edge indicators
    for label_pair, edges in edges_by_label_pair.items():

        # y == 1 <==> sum(x1, ..., xn) > 0
        #
        # y - sum(x1, ..., xn) <= 0
        # sum(x1, ..., xn) - n*y <= 0

        constraint1 = pylp.LinearConstraint()
        constraint2 = pylp.LinearConstraint()
        constraint1.set_coefficient(label_indicators[label_pair], 1)
        constraint2.set_coefficient(label_indicators[label_pair], -len(edges))
        for edge in edges:
            constraint1.set_coefficient(edge_indicators[edge], -1)
            constraint2.set_coefficient(edge_indicators[edge], 1)
        constraint1.set_relation(pylp.Relation.LessEqual)
        constraint2.set_relation(pylp.Relation.LessEqual)
        constraint1.set_value(0)
        constraint2.set_value(0)
        constraints.add(constraint1)
        constraints.add(constraint2)

    if edge_conflicts is not None:
        for conflict in edge_conflicts:
            constraint = pylp.LinearConstraint()
            for edge in conflict:
                constraint.set_coefficient(edge_indicators[tuple(edge)], 1)

            constraint.set_relation(pylp.Relation.LessEqual)
            constraint.set_value(1)
            constraints.add(constraint)

    # pin no-match pair indicator to 1
    constraint = pylp.LinearConstraint()
    no_match_indicator = label_indicators[(no_match_label, no_match_label)]
    constraint.set_coefficient(no_match_indicator, 1)
    constraint.set_relation(pylp.Relation.Equal)
    constraint.set_value(1)
    constraints.add(constraint)

    # add integer for splits
    #   splits = sum of all label pair indicators - n
    # with n number of labels in x (including no-match)
    #   sum - splits = n
    splits = num_vars
    num_vars += 1
    constraint = pylp.LinearConstraint()
    for _, label_indicator in label_indicators.items():
        constraint.set_coefficient(label_indicator, 1)
    constraint.set_coefficient(splits, -1)
    constraint.set_relation(pylp.Relation.Equal)
    constraint.set_value(len(labels_x))
    constraints.add(constraint)

    # add integer for merges
    merges = num_vars
    num_vars += 1
    constraint = pylp.LinearConstraint()
    for _, label_indicator in label_indicators.items():
        constraint.set_coefficient(label_indicator, 1)
    constraint.set_coefficient(merges, -1)
    constraint.set_relation(pylp.Relation.Equal)
    constraint.set_value(len(labels_y))
    constraints.add(constraint)

    # set objective
    objective = pylp.LinearObjective(num_vars)
    objective.set_coefficient(splits, 1)
    objective.set_coefficient(merges, 1)

    min_edge_cost = None
    if edge_costs is not None:
        edge_costs, no_match_costs = normalize_matching_costs(
            len(nodes_x), len(nodes_y), edge_costs, no_match_costs)

        edge_costs += [no_match_costs] * (len(nodes_x) + len(nodes_y))
        min_edge_cost = min(edge_costs)

        for edge, cost in zip(edges_xy, edge_costs):
            objective.set_coefficient(edge_indicators[edge], cost)

    # solve

    logger.debug("Added %d constraints", len(constraints))
    for i in range(len(constraints)):
        logger.debug(constraints[i])

    logger.debug("Creating linear solver")
    solver = pylp.create_linear_solver(pylp.Preference.Any)
    variable_types = pylp.VariableTypeMap()
    variable_types[splits] = pylp.VariableType.Integer
    variable_types[merges] = pylp.VariableType.Integer

    if min_edge_cost is None:
        logger.debug("Set optimality gap to zero")
        solver.set_optimality_gap(0.0, True)
    else:
        logger.debug("Set optimality gap to lowest edge cost")
        epsilon = 10**(-4)
        solver.set_optimality_gap(max([min_edge_cost - epsilon, 0.0]), True)

    logger.debug("Initializing solver with %d variables", num_vars)
    solver.initialize(num_vars, pylp.VariableType.Binary, variable_types)

    logger.debug("Setting objective")
    solver.set_objective(objective)

    logger.debug("Setting constraints")
    solver.set_constraints(constraints)

    logger.debug("Solving...")
    solution, message = solver.solve()

    logger.debug("Solver returned: %s", message)
    if 'NOT' in message:
        raise RuntimeError("No optimal solution found...")

    # get label matches

    label_matches = []
    for label_pair, label_indicator in label_indicators.items():
        if no_match_node not in label_pair:
            if solution[label_indicator] > 0.5:
                label_matches.append(label_pair)

    # get node matches

    node_matches = [
        e for e in edges_xy
        if solution[edge_indicators[e]] > 0.5 and no_match_node not in e
    ]

    # get error counts

    num_splits = solution[splits]
    num_merges = solution[merges]
    num_fps = 0
    num_fns = 0
    for label_pair, label_indicator in label_indicators.items():
        if label_pair[0] == no_match_label:
            num_fps += solution[label_indicator]
        if label_pair[1] == no_match_label:
            num_fns += solution[label_indicator]
    num_fps -= 1
    num_fns -= 1
    num_splits -= num_fps
    num_merges -= num_fns

    return (label_matches, node_matches, num_splits, num_merges, num_fps,
            num_fns)