def test_from_diff_fit(self): exp = ElasticTensorExpansion.from_diff_fit(self.strains, self.pk_stresses)
def run_task(self, fw_spec): ref_struct = self['structure'] d = {"analysis": {}, "initial_structure": self['structure'].as_dict()} # Get optimized structure calc_locs_opt = [ cl for cl in fw_spec.get('calc_locs', []) if 'optimiz' in cl['name'] ] if calc_locs_opt: optimize_loc = calc_locs_opt[-1]['path'] logger.info("Parsing initial optimization directory: {}".format( optimize_loc)) drone = VaspDrone() optimize_doc = drone.assimilate(optimize_loc) opt_struct = Structure.from_dict( optimize_doc["calcs_reversed"][0]["output"]["structure"]) d.update({"optimized_structure": opt_struct.as_dict()}) ref_struct = opt_struct eq_stress = -0.1 * Stress(optimize_doc["calcs_reversed"][0] ["output"]["ionic_steps"][-1]["stress"]) else: eq_stress = None if self.get("fw_spec_field"): d.update({ self.get("fw_spec_field"): fw_spec.get(self.get("fw_spec_field")) }) # Get the stresses, strains, deformations from deformation tasks defo_dicts = fw_spec["deformation_tasks"].values() stresses, strains, deformations = [], [], [] for defo_dict in defo_dicts: stresses.append(Stress(defo_dict["stress"])) strains.append(Strain(defo_dict["strain"])) deformations.append(Deformation(defo_dict["deformation_matrix"])) # Add derived stresses and strains if symmops is present for symmop in defo_dict.get("symmops", []): stresses.append(Stress(defo_dict["stress"]).transform(symmop)) strains.append(Strain(defo_dict["strain"]).transform(symmop)) deformations.append( Deformation( defo_dict["deformation_matrix"]).transform(symmop)) stresses = [-0.1 * s for s in stresses] pk_stresses = [ stress.piola_kirchoff_2(deformation) for stress, deformation in zip(stresses, deformations) ] d['fitting_data'] = { 'cauchy_stresses': stresses, 'eq_stress': eq_stress, 'strains': strains, 'pk_stresses': pk_stresses, 'deformations': deformations } logger.info("Analyzing stress/strain data") # TODO: @montoyjh: what if it's a cubic system? don't need 6. -computron # TODO: Can add population method but want to think about how it should # be done. -montoyjh order = self.get('order', 2) if order > 2: method = 'finite_difference' else: method = self.get('fitting_method', 'finite_difference') if method == 'finite_difference': result = ElasticTensorExpansion.from_diff_fit(strains, pk_stresses, eq_stress=eq_stress, order=order) if order == 2: result = ElasticTensor(result[0]) elif method == 'pseudoinverse': result = ElasticTensor.from_pseudoinverse(strains, pk_stresses) elif method == 'independent': result = ElasticTensor.from_independent_strains( strains, pk_stresses, eq_stress=eq_stress) else: raise ValueError( "Unsupported method, method must be finite_difference, " "pseudoinverse, or independent") ieee = result.convert_to_ieee(ref_struct) d.update({ "elastic_tensor": { "raw": result.voigt, "ieee_format": ieee.voigt } }) if order == 2: d.update({ "derived_properties": ieee.get_structure_property_dict(ref_struct) }) else: soec = ElasticTensor(ieee[0]) d.update({ "derived_properties": soec.get_structure_property_dict(ref_struct) }) d["formula_pretty"] = ref_struct.composition.reduced_formula d["fitting_method"] = method d["order"] = order d = jsanitize(d) # Save analysis results in json or db db_file = env_chk(self.get('db_file'), fw_spec) if not db_file: with open("elasticity.json", "w") as f: f.write(json.dumps(d, default=DATETIME_HANDLER)) else: db = VaspCalcDb.from_db_file(db_file, admin=True) db.collection = db.db["elasticity"] db.collection.insert_one(d) logger.info("Elastic analysis complete.") return FWAction()
def run_task(self, fw_spec): ref_struct = self['structure'] d = { "analysis": {}, "initial_structure": self['structure'].as_dict() } # Get optimized structure calc_locs_opt = [cl for cl in fw_spec.get('calc_locs', []) if 'optimiz' in cl['name']] if calc_locs_opt: optimize_loc = calc_locs_opt[-1]['path'] logger.info("Parsing initial optimization directory: {}".format(optimize_loc)) drone = VaspDrone() optimize_doc = drone.assimilate(optimize_loc) opt_struct = Structure.from_dict(optimize_doc["calcs_reversed"][0]["output"]["structure"]) d.update({"optimized_structure": opt_struct.as_dict()}) ref_struct = opt_struct eq_stress = -0.1*Stress(optimize_doc["calcs_reversed"][0]["output"]["ionic_steps"][-1]["stress"]) else: eq_stress = None if self.get("fw_spec_field"): d.update({self.get("fw_spec_field"): fw_spec.get(self.get("fw_spec_field"))}) # Get the stresses, strains, deformations from deformation tasks defo_dicts = fw_spec["deformation_tasks"].values() stresses, strains, deformations = [], [], [] for defo_dict in defo_dicts: stresses.append(Stress(defo_dict["stress"])) strains.append(Strain(defo_dict["strain"])) deformations.append(Deformation(defo_dict["deformation_matrix"])) # Add derived stresses and strains if symmops is present for symmop in defo_dict.get("symmops", []): stresses.append(Stress(defo_dict["stress"]).transform(symmop)) strains.append(Strain(defo_dict["strain"]).transform(symmop)) deformations.append(Deformation(defo_dict["deformation_matrix"]).transform(symmop)) stresses = [-0.1*s for s in stresses] pk_stresses = [stress.piola_kirchoff_2(deformation) for stress, deformation in zip(stresses, deformations)] d['fitting_data'] = {'cauchy_stresses': stresses, 'eq_stress': eq_stress, 'strains': strains, 'pk_stresses': pk_stresses, 'deformations': deformations } logger.info("Analyzing stress/strain data") # TODO: @montoyjh: what if it's a cubic system? don't need 6. -computron # TODO: Can add population method but want to think about how it should # be done. -montoyjh order = self.get('order', 2) if order > 2: method = 'finite_difference' else: method = self.get('fitting_method', 'finite_difference') if method == 'finite_difference': result = ElasticTensorExpansion.from_diff_fit( strains, pk_stresses, eq_stress=eq_stress, order=order) if order == 2: result = ElasticTensor(result[0]) elif method == 'pseudoinverse': result = ElasticTensor.from_pseudoinverse(strains, pk_stresses) elif method == 'independent': result = ElasticTensor.from_independent_strains(strains, pk_stresses, eq_stress=eq_stress) else: raise ValueError("Unsupported method, method must be finite_difference, " "pseudoinverse, or independent") ieee = result.convert_to_ieee(ref_struct) d.update({ "elastic_tensor": { "raw": result.voigt, "ieee_format": ieee.voigt } }) if order == 2: d.update({"derived_properties": ieee.get_structure_property_dict(ref_struct)}) else: soec = ElasticTensor(ieee[0]) d.update({"derived_properties": soec.get_structure_property_dict(ref_struct)}) d["formula_pretty"] = ref_struct.composition.reduced_formula d["fitting_method"] = method d["order"] = order d = jsanitize(d) # Save analysis results in json or db db_file = env_chk(self.get('db_file'), fw_spec) if not db_file: with open("elasticity.json", "w") as f: f.write(json.dumps(d, default=DATETIME_HANDLER)) else: db = VaspCalcDb.from_db_file(db_file, admin=True) db.collection = db.db["elasticity"] db.collection.insert_one(d) logger.info("Elastic analysis complete.") return FWAction()
def get_elastic_analysis(opt_task, defo_tasks): """ Performs the analysis of opt_tasks and defo_tasks necessary for an elastic analysis Args: opt_task: task doc corresponding to optimization defo_tasks: task_doc corresponding to deformations Returns: elastic document with fitted elastic tensor and analysis """ elastic_doc = {"warnings": []} opt_struct = Structure.from_dict(opt_task['output']['structure']) input_struct = Structure.from_dict(opt_task['input']['structure']) # For now, discern order (i.e. TOEC) using parameters from optimization # TODO: figure this out more intelligently diff = get(opt_task, "input.incar.EDIFFG", 0) order = 3 if np.isclose(diff, -0.001) else 2 explicit, derived = process_elastic_calcs(opt_task, defo_tasks) all_calcs = explicit + derived stresses = [c.get("cauchy_stress") for c in all_calcs] pk_stresses = [c.get("pk_stress") for c in all_calcs] strains = [c.get("strain") for c in all_calcs] elastic_doc['calculations'] = all_calcs vstrains = [s.zeroed(0.002).voigt for s in strains] if np.linalg.matrix_rank(vstrains) == 6: if order == 2: et_fit = legacy_fit(strains, stresses) elif order == 3: # Test for TOEC if len(strains) < 70: logger.info("insufficient valid strains for {} TOEC".format( opt_task['formula_pretty'])) return None eq_stress = -0.1 * Stress(opt_task['output']['stress']) # strains = [s.zeroed(0.0001) for s in strains] # et_expansion = pdb_function(ElasticTensorExpansion.from_diff_fit, # strains, pk_stresses, eq_stress=eq_stress, tol=1e-5) et_exp_raw = ElasticTensorExpansion.from_diff_fit( strains, pk_stresses, eq_stress=eq_stress, tol=1e-6) et_exp = et_exp_raw.voigt_symmetrized.convert_to_ieee(opt_struct) et_exp = et_exp.round(1) et_fit = ElasticTensor(et_exp[0]) # Update elastic doc with TOEC stuff tec = et_exp.thermal_expansion_coeff(opt_struct, 300) elastic_doc.update({ "elastic_tensor_expansion": elastic_sanitize(et_exp), "elastic_tensor_expansion_original": elastic_sanitize(et_exp_raw), "thermal_expansion_tensor": tec, "average_linear_thermal_expansion": np.trace(tec) / 3 }) et = et_fit.voigt_symmetrized.convert_to_ieee(opt_struct) vasp_input = opt_task['input'] if 'structure' in vasp_input: vasp_input.pop('structure') completed_at = max([d['completed_at'] for d in defo_tasks]) elastic_doc.update({ "optimization_task_id": opt_task['task_id'], "optimization_dir_name": opt_task['dir_name'], "cauchy_stresses": stresses, "strains": strains, "elastic_tensor": elastic_sanitize(et.zeroed(0.01).round(0)), # Convert compliance to 10^-12 Pa "compliance_tensor": elastic_sanitize(et.compliance_tensor * 1000), "elastic_tensor_original": elastic_sanitize(et_fit), "optimized_structure": opt_struct, "spacegroup": input_struct.get_space_group_info()[0], "input_structure": input_struct, "completed_at": completed_at, "optimization_input": vasp_input, "order": order, "pretty_formula": opt_struct.composition.reduced_formula }) # Add magnetic type mag = CollinearMagneticStructureAnalyzer(opt_struct).ordering.value elastic_doc['magnetic_type'] = mag_types[mag] try: prop_dict = et.get_structure_property_dict(opt_struct) prop_dict.pop('structure') except ValueError: logger.debug("Negative K or G found, structure property " "dict not computed") prop_dict = et.property_dict for k, v in prop_dict.items(): if k in ['homogeneous_poisson', 'universal_anisotropy']: prop_dict[k] = np.round(v, 2) else: prop_dict[k] = np.round(v, 0) elastic_doc.update(prop_dict) # Update with state and warnings state, warnings = get_state_and_warnings(elastic_doc) elastic_doc.update({"state": state, "warnings": warnings}) # TODO: add kpoints params? return elastic_doc else: logger.info("insufficient valid strains for {}".format( opt_task['formula_pretty'])) return None