def get_band_center(form):
    c = Composition(str(form))
    prod = 1.0
    for el, amt in c.get_el_amt_dict().iteritems():
        prod = prod * (Element(el).X ** amt)

    return -prod ** (1 / sum(c.get_el_amt_dict().values()))
예제 #2
0
    def _parse_criteria(self, criteria):
        """
        Internal method to perform mapping of criteria to proper mongo queries
        using aliases, as well as some useful sanitization. For example, string
        formulas such as "Fe2O3" are auto-converted to proper mongo queries of
        {"Fe":2, "O":3}.

        If 'criteria' is None, returns an empty dict. Putting this logic here
        simplifies callers and allows subclasses to insert something even
        when there are no criteria.
        """
        if criteria is None:
            return dict()
        parsed_crit = dict()
        for k, v in self.defaults.items():
            if k not in criteria:
                parsed_crit[self.aliases.get(k, k)] = v

        for key, crit in list(criteria.items()):
            if key in ["normalized_formula", "reduced_cell_formula"]:
                comp = Composition(crit)
                parsed_crit["pretty_formula"] = comp.reduced_formula
            elif key == "unit_cell_formula":
                comp = Composition(crit)
                crit = comp.as_dict()
                for el, amt in crit.items():
                    parsed_crit["{}.{}".format(self.aliases[key], el)] = amt
                parsed_crit["nelements"] = len(crit)
                parsed_crit['pretty_formula'] = comp.reduced_formula
            elif key in ["$or", "$and"]:
                parsed_crit[key] = [self._parse_criteria(m) for m in crit]
            else:
                parsed_crit[self.aliases.get(key, key)] = crit
        return parsed_crit
예제 #3
0
    def __init__(self, lit_file=DEFAULT_LIT_FILE):

        self.line_data = {}  #  (line no.) -> {"formula_pretty", "tag1", "tag2", "tag3"}

        if not os.path.exists(lit_file):
            raise ValueError("Cannot find lit file: {}".format(lit_file))

        with open(lit_file) as f:
            line_no = 1
            tag1 = ""  # most recent level-1 tag
            tag2 = ""  # most recent level-2 tag
            tag3 = ""  # most recent level-3 tag

            for line in f:
                line = line.strip()
                if line.startswith("###"):
                    tag3 = line[3:]
                elif line.startswith("##"):
                    tag2 = line[2:]
                    tag3 = ""
                elif line.startswith("#"):
                    tag1 = line[1:]
                    tag2 = ""
                    tag3 = ""
                elif line:
                    c = Composition(line)
                    self.line_data[line_no] = \
                        {"formula_pretty": c.get_reduced_formula_and_factor()[0],
                         "tag1": tag1, "tag2": tag2, "tag3": tag3}
                line_no += 1
예제 #4
0
    def get_hhi(self, comp_or_form):
        """
        Gets the reserve and production HHI for a compound.

        Args:
            comp_or_form (Composition or String): A Composition or String formula

        Returns:
            A tuple representing the (HHI_production, HHI_reserve)
        """

        try:
            if not isinstance(comp_or_form, Composition):
                comp_or_form = Composition(comp_or_form)

            hhi_p = 0
            hhi_r = 0

            for e in comp_or_form.elements:
                percent = comp_or_form.get_wt_fraction(e)
                dp, dr = self._get_hhi_el(e)
                hhi_p += dp * percent
                hhi_r += dr * percent
            return hhi_p, hhi_r

        except:
            return (None, None)
예제 #5
0
def get_composition_from_string(comp_str):
    """validate and return composition from string `comp_str`."""
    from pymatgen import Composition, Element
    comp = Composition(comp_str)
    for element in comp.elements:
        Element(element)
    formula = comp.get_integer_formula_and_factor()[0]
    comp = Composition(formula)
    return ''.join([
        '{}{}'.format(key, int(value) if value > 1 else '')
        for key, value in comp.as_dict().items()
    ])
예제 #6
0
def snl_to_wf_phonon(snl, parameters=None):
    fws = []
    connections = {}
    parameters = parameters if parameters else {}

    snl_priority = parameters.get('priority', 1)
    priority = snl_priority * 2  # once we start a job, keep going!

    f = Composition.from_formula(snl.structure.composition.reduced_formula).alphabetical_formula

    # add the SNL to the SNL DB and figure out duplicate group
    tasks = [AddSNLTask()]
    spec = {'task_type': 'Add to SNL database', 'snl': snl.to_dict, '_queueadapter': QA_DB, '_priority': snl_priority}
    if 'snlgroup_id' in parameters and isinstance(snl, MPStructureNL):
        spec['force_mpsnl'] = snl.to_dict
        spec['force_snlgroup_id'] = parameters['snlgroup_id']
        del spec['snl']
    fws.append(FireWork(tasks, spec, name=get_slug(f + '--' + spec['task_type']), fw_id=0))
    connections[0] = [1]

    # run GGA structure optimization for force convergence
    spec = snl_to_wf._snl_to_spec(snl)
    spec = update_spec_force_convergence(spec)
    spec['run_tags'].append("origin")
    spec['_priority'] = priority
    spec['_queueadapter'] = QA_VASP
    spec['task_type'] = "Vasp force convergence"
    tasks = [VaspWriterTask(), get_custodian_task(spec)]
    fws.append(FireWork(tasks, spec, name=get_slug(f + '--' + spec['task_type']), fw_id=1))

    # insert into DB - GGA structure optimization
    spec = {'task_type': 'VASP db insertion', '_priority': priority,
            '_allow_fizzled_parents': True, '_queueadapter': QA_DB}
    fws.append(
        FireWork([VaspToDBTask()], spec, name=get_slug(f + '--' + spec['task_type']), fw_id=2))
    connections[1] = [2]

    spec = {'task_type': 'Setup Deformed Struct Task', '_priority': priority,
                '_queueadapter': QA_CONTROL}
    fws.append(
            FireWork([SetupDeformedStructTask()], spec, name=get_slug(f + '--' + spec['task_type']),
                     fw_id=3))
    connections[2] = [3]

    wf_meta = get_meta_from_structure(snl.structure)
    wf_meta['run_version'] = 'May 2013 (1)'

    if '_materialsproject' in snl.data and 'submission_id' in snl.data['_materialsproject']:
        wf_meta['submission_id'] = snl.data['_materialsproject']['submission_id']

    return Workflow(fws, connections, name=Composition.from_formula(
        snl.structure.composition.reduced_formula).alphabetical_formula, metadata=wf_meta)
예제 #7
0
 def test_get_atoms(self):
     if not aio.ase_loaded:
         raise SkipTest("ASE not present. Skipping...")
     p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
     structure = p.structure
     atoms = aio.AseAtomsAdaptor.get_atoms(structure)
     ase_composition = Composition.from_formula(atoms.get_name())
     self.assertEqual(ase_composition, structure.composition)
예제 #8
0
    def test_init(self):
        filepath = os.path.join(test_dir, 'POSCAR')
        poscar = Poscar.from_file(filepath)
        comp = poscar.structure.composition
        self.assertEqual(comp, Composition.from_formula("Fe4P4O16"))

        #Vasp 4 type with symbols at the end.
        poscar_string = """Test1
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition.from_formula("SiF"))

        #Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test2
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000
0.750000 0.500000 0.750000"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition.from_formula("HHe"))

        #Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test3
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
Selective dynamics
direct
0.000000 0.000000 0.000000 T T T Si
0.750000 0.500000 0.750000 F F F O"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.selective_dynamics, [[True, True, True], [False, False, False]])
        self.selective_poscar = poscar
예제 #9
0
파일: snl_to_wf.py 프로젝트: cmgtam/MPWorks
def snl_to_wf(snl, do_bandstructure=True):
    # TODO: clean this up once we're out of testing mode
    # TODO: add WF metadata
    fws = []
    connections = {}

    # add the SNL to the SNL DB and figure out duplicate group
    tasks = [AddSNLTask()]
    spec = {'task_type': 'Add to SNL database', 'snl': snl.to_dict}
    fws.append(FireWork(tasks, spec, name=spec['task_type'], fw_id=0))
    connections[0] = 1

    # run GGA structure optimization
    spec = _snl_to_spec(snl, enforce_gga=True)
    tasks = [VaspWriterTask(), _get_custodian_task(spec)]
    fws.append(FireWork(tasks, spec, name=spec['task_type'], fw_id=1))

    # insert into DB - GGA structure optimization
    spec = {'task_type': 'VASP db insertion', '_priority': 2,
            '_allow_fizzled_parents': True}
    spec.update(_get_metadata(snl))
    fws.append(FireWork([VaspToDBTask()], spec, name=spec['task_type'], fw_id=2))
    connections[1] = 2

    if do_bandstructure:
        spec = {'task_type': 'Controller: add Electronic Structure'}
        spec.update(_get_metadata(snl))
        fws.append(
            FireWork([AddEStructureTask()], spec, name=spec['task_type'], fw_id=3))
        connections[2] = 3

    # determine if GGA+U FW is needed
    incar = MPVaspInputSet().get_incar(snl.structure).to_dict

    if 'LDAU' in incar and incar['LDAU']:
        spec = {'task_type': 'GGA+U optimize structure (2x)',
                '_dupefinder': DupeFinderVasp().to_dict()}
        spec.update(_get_metadata(snl))
        fws.append(FireWork(
            [VaspCopyTask({'extension': '.relax2'}), SetupGGAUTask(),
             _get_custodian_task(spec)], spec, name=spec['task_type'], fw_id=10))
        connections[2].append(10)

        spec = {'task_type': 'VASP db insertion',
                '_allow_fizzled_parents': True}
        spec.update(_get_metadata(snl))
        fws.append(
            FireWork([VaspToDBTask()], spec, name=spec['task_type'], fw_id=11))
        connections[10] = 11

        if do_bandstructure:
            spec = {'task_type': 'Controller: add Electronic Structure'}
            spec.update(_get_metadata(snl))
            fws.append(FireWork([AddEStructureTask()], spec, name=spec['task_type'], fw_id=12))
            connections[11] = 12

    return Workflow(fws, connections, name=Composition.from_formula(snl.structure.composition.reduced_formula).alphabetical_formula)
예제 #10
0
 def test_calculate_energy(self):
     reactants = [Composition("MgO"), Composition("Al2O3")]
     products = [Composition("MgAl2O4")]
     energies = {
         Composition("MgO"): -0.1,
         Composition("Al2O3"): -0.2,
         Composition("MgAl2O4"): -0.5
     }
     rxn = Reaction(reactants, products)
     self.assertEqual(str(rxn), "1.000 MgO + 1.000 Al2O3 -> 1.000 MgAl2O4")
     self.assertEqual(rxn.normalized_repr, "MgO + Al2O3 -> MgAl2O4")
     self.assertAlmostEquals(rxn.calculate_energy(energies), -0.2, 5)
예제 #11
0
    def test_remove_spectator_species(self):
        rxn = BalancedReaction(
            {
                Composition("Li"): 4,
                Composition("O2"): 1,
                Composition('Na'): 1
            }, {
                Composition("Li2O"): 2,
                Composition('Na'): 1
            })

        self.assertTrue(Composition('Na') not in rxn.all_comp)
예제 #12
0
def task_dict_to_wf(task_dict, launchpad):
    fw_id = launchpad.get_new_fw_id()
    l_id = launchpad.get_new_launch_id()

    spec = {'task_type': task_dict['task_type'], 'run_tags': task_dict['run_tags'],
            'vaspinputset_name': None, 'vasp': None, 'mpsnl': task_dict['snl'],
            'snlgroup_id': task_dict['snlgroup_id']}
    tasks = [DummyLegacyTask()]

    launch_dir = task_dict['dir_name_full']

    stored_data = {'error_list': []}
    update_spec = {'prev_vasp_dir': task_dict['dir_name'],
                   'prev_task_type': spec['task_type'],
                   'mpsnl': spec['mpsnl'], 'snlgroup_id': spec['snlgroup_id'],
                   'run_tags': spec['run_tags']}

    fwaction = FWAction(stored_data=stored_data, update_spec=update_spec)

    if task_dict['completed_at']:
        complete_date = datetime.datetime.strptime(task_dict['completed_at'], "%Y-%m-%d %H:%M:%S")
        state_history = [{"created_on": complete_date, 'state': 'COMPLETED'}]
    else:
        state_history = []

    launches = [Launch('COMPLETED', launch_dir, fworker=None, host=None, ip=None, action=fwaction,
                       state_history=state_history, launch_id=l_id, fw_id=fw_id)]

    f = Composition.from_formula(task_dict['pretty_formula']).alphabetical_formula


    fw = FireWork(tasks, spec, name=get_slug(f + '--' + spec['task_type']), launches=launches, state='COMPLETED', created_on=None,
                 fw_id=fw_id)

    wf_meta = get_meta_from_structure(Structure.from_dict(task_dict['snl']))
    wf_meta['run_version'] = 'preproduction (0)'

    wf = Workflow.from_FireWork(fw, name=f, metadata=wf_meta)

    launchpad.add_wf(wf, reassign_all=False)
    launchpad._upsert_launch(launches[0])

    print 'ADDED', fw_id
    # return fw_id
    return fw_id
예제 #13
0
    def synth_score_from_formula(self, formula):
        """
        Takes input in form of an unreduced crystal composition and returns
        the synthesizability score for the same.

        Args:
            formula (str): For example: 'Ba2Yb2Al4Si2N10O4'

         Returns:
            synth_scores (list): Synthesizability scores (between 0 and 1) of
                 given sample.

        """

        # Updating the criteria
        updated_input = {"full_formula": formula}

        # Extracting the composition
        comp = Composition(formula)

        # Extracting the MP-IDs
        mp_id = self._get_mp_id(updated_input)

        # If Input given is invalid
        if len(mp_id) == 0:
            return "No such compound exists in Materials Project Database"

        # Checking if it already exists in pre-trained model
        fblock, mp_id, synth_score, df_input = self._check_if_already_exists(
            comp, updated_input)

        # If found in pre-trained models, report synth_scores
        if df_input.shape[0] == 0:
            if len(synth_score) != 0:
                logging.info("The synthesizability scores are %s", synth_score)
                return synth_score

        # Else, train the model and report scores
        else:
            df_extracted = self._extract_features(df_input)
            input_ids, df = self._append_data(df_extracted, fblock)
            score = self._do_pulearner(input_ids, df)
            synth_score.append(score)
            logging.info("The synthesizability scores are %s", synth_score)
            return synth_score
예제 #14
0
    def testName(self):
        entry_Li = ComputedEntry("Li", -1.90753119)

        with open(os.path.join(test_dir, "LiTiO2_batt.json"), "r") as f:
            entries_LTO = json.load(f, cls=MontyDecoder)
            ie_LTO = InsertionElectrode.from_entries(entries_LTO, entry_Li)

        with open(os.path.join(test_dir, "FeF3_batt.json"), "r") as fid:
            entries = json.load(fid, cls=MontyDecoder)
            ce_FF = ConversionElectrode.from_composition_and_entries(
                Composition("FeF3"), entries
            )

        plotter = VoltageProfilePlotter(xaxis="frac_x")
        plotter.add_electrode(ie_LTO, "LTO insertion")
        plotter.add_electrode(ce_FF, "FeF3 conversion")
        self.assertIsNotNone(plotter.get_plot_data(ie_LTO))
        self.assertIsNotNone(plotter.get_plot_data(ce_FF))
예제 #15
0
def get_polymorphs(f_str, pda):
    """get_polymorphs
    Gets all the polymorphs with a chemical composition within the cutoff.
    :param f_str: Chemical composition we're interested in.
    :param pda: A PDAnalyzer for the appropriate phase diagram.
    :return: A list of entries within the cutoff.
    """
    comp = Composition(f_str).reduced_composition
    relevant_polymorphs = []
    for e in pda._pd.all_entries:
        if e.composition.reduced_composition == comp:
            ehull = pda.get_decomp_and_e_above_hull(e)[1]
            anion = [el for el in e.composition.as_dict() if el in anions][0]
            if ehull < ehull_cut[anion]:
                form_e = pda._pd.get_form_energy_per_atom(e)
                e.data["formation_energy_per_atom"] = form_e
                relevant_polymorphs.append(e)
    return relevant_polymorphs
예제 #16
0
 def scrape_comp(row):
     # reformulate the doped site by electronegativity order of elements for a better web scraping,and remove '0's & parantheses. e.g.  Pb(Ti0.50Zr0.50)O3 --> PbZr0.5Ti0.5O3
     site_list = re.split(
         r'[()]', row.StructuredFormula
     )  # get what's inside parantheses and others separately
     doped_site = max(
         site_list,
         key=len)  # get doped site re.sub(r"(?<=\d)0+", "", d)
     site_rearranged = '(' + re.sub(
         r"(?<=\d)0+", "",
         Composition(doped_site).formula.replace(' ', '')
     ) + ')'  # arrange elements in electronegative order, remove '0' and club with ()
     site_list[site_list.index(
         doped_site)] = site_rearranged  # replace with processed site
     compound = str(''.join(site_list))
     # print (compound)
     result = self.search(compound)
     return compound, result
예제 #17
0
def get_meta_from_structure(structure):
    if isinstance(structure, TransformedStructure):
        structure = structure.final_structure

    comp = structure.composition
    elsyms = sorted(set([e.symbol for e in comp.elements]))
    meta = {'nsites': structure.num_sites,
            'elements': elsyms,
            'nelements': len(elsyms),
            'formula': comp.formula,
            'formula_pretty': comp.reduced_formula,
            'formula_reduced_abc': Composition(comp.reduced_formula)
            .alphabetical_formula,
            'formula_anonymous': comp.anonymized_formula,
            'chemsys': '-'.join(elsyms),
            'is_ordered': structure.is_ordered,
            'is_valid': structure.is_valid()}
    return meta
    def __init__(self, mpid, cmpd_dict):
        """Initializing the feature finder.

        Sets up a FeatureFinder based on a dict from the hydrate finder.

        Args:
            mpid (str): The MP ID of the dry compound in question.
            cmpd_dict (dict): A dictionary output from the hydrate finder.

        """
        comp = Composition(cmpd_dict['formula']).as_dict()
        self.comp = comp
        self.num_atoms = sum([comp[ele] for ele in comp])
        self.mpid = mpid

        with MPRester() as mpr:
            struct = mpr.get_structure_by_material_id(self.mpid)
        self.struct = struct
예제 #19
0
def get_composition_from_string(comp_str):
    """validate and return composition from string `comp_str`."""
    from pymatgen import Composition, Element
    comp = Composition(comp_str)
    for element in comp.elements:
        Element(element)
    formula = comp.get_integer_formula_and_factor()[0]
    comp = Composition(formula)
    return ''.join([
        '{}{}'.format(key,
                      int(value) if value > 1 else '')
        for key, value in comp.as_dict().items()
    ])
예제 #20
0
def convert_mpworks_to_atomate(mpworks_doc, update_mpworks=True):
    """
    Function to convert an mpworks document into an atomate
    document, uses schema above and a few custom cases

    Args:
        mpworks_doc (dict): mpworks task document
        update_mpworks (bool): flag to indicate that mpworks schema
            should be updated to final MPWorks version
    """
    if update_mpworks:
        update_mpworks_schema(mpworks_doc)

    atomate_doc = {}
    for key_mpworks, key_atomate in settings['task_conversion_keys'].items():
        val = get(mpworks_doc, key_mpworks)
        set_(atomate_doc, key_atomate, val)

    # Task type
    atomate_doc["task_label"] = settings['task_label_conversions'].get(
        mpworks_doc["task_type"])

    # calculations
    atomate_doc["calcs_reversed"] = mpworks_doc["calculations"][::-1]

    # anonymous formula
    comp = Composition(atomate_doc['composition_reduced'])
    atomate_doc["formula_anonymous"] = comp.anonymized_formula

    # deformation matrix and original_task_id
    if "deformation_matrix" in mpworks_doc:
        # Transpose this b/c of old bug, should verify in doc processing
        defo = mpworks_doc["deformation_matrix"]
        if isinstance(defo, str):
            defo = convert_string_deformation_to_list(defo)
        defo = np.transpose(defo).tolist()
        set_(atomate_doc, "transmuter.transformations",
             ["DeformStructureTransformation"])
        set_(atomate_doc, "transmuter.transformation_params",
             [{
                 "deformation": defo
             }])

    return atomate_doc
def test_hse_structure_opt(default_dict):
    default_dict.update({
        "xc": Xc.hse,
        "composition": Composition("UO2"),
        "symbol_list": ["U", "O"],
        "potcar": Potcar(["U", "O"]),
        "exchange_ratio": 0.5,
        "set_hubbard_u": True
    })

    generator = IncarSettingsGenerator(**default_dict)
    # for k, v in generator.incar_settings.items():
    #     print(f'\"{k}\": {v}, ')
    expected = {
        "ALGO": "Damped",
        "PREC": "Normal",
        "LREAL": False,
        "EDIFF": 1e-07,
        "ENCUT": 520.0,
        "LASPH": True,
        "NELM": 100,
        "ISIF": 3,
        "IBRION": 2,
        "EDIFFG": -0.005,
        "NSW": 50,
        "ISMEAR": 0,
        "SIGMA": 0.1,
        "LWAVE": True,
        "LCHARG": False,
        "LORBIT": 10,
        "LHFCALC": True,
        "PRECFOCK": "Fast",
        "TIME": 0.4,
        "AEXX": 0.5,
        "HFSCREEN": 0.208,
        "LDAU": True,
        "LDAUTYPE": 2,
        "LMAXMIX": 6,
        "LDAUPRINT": 1,
        "LDAUU": [5, 0],
        "LDAUL": [3, -1],
        "KPAR": 1,
    }
    assert generator.incar_settings == expected
예제 #22
0
    def setUp(self):

        self.formulas = ["LiCoO2", "FeF3", "MnO2"]
        self.conversion_eletrodes = {}
        for f in self.formulas:

            with open(
                    os.path.join(PymatgenTest.TEST_FILES_DIR,
                                 f + "_batt.json"), "r") as fid:
                entries = json.load(fid, cls=MontyDecoder)
            if f in ["LiCoO2", "FeF3"]:
                working_ion = "Li"
            elif f in ["MnO2"]:
                working_ion = "Mg"
            c = ConversionElectrode.from_composition_and_entries(
                Composition(f), entries, working_ion_symbol=working_ion)
            self.conversion_eletrodes[f] = {
                "working_ion": working_ion,
                "CE": c
            }

        self.expected_properties = {
            "LiCoO2": {
                "average_voltage": 2.26940307125,
                "capacity_grav": 903.19752911225669,
                "capacity_vol": 2903.35804724,
                "specific_energy": 2049.7192465127678,
                "energy_density": 6588.8896693479574,
            },
            "FeF3": {
                "average_voltage": 3.06179925889,
                "capacity_grav": 601.54508701578118,
                "capacity_vol": 2132.2069115142394,
                "specific_energy": 1841.8103016131706,
                "energy_density": 6528.38954147,
            },
            "MnO2": {
                "average_voltage": 1.7127027687901726,
                "capacity_grav": 790.9142070034802,
                "capacity_vol": 3543.202003526853,
                "specific_energy": 1354.6009522103434,
                "energy_density": 6068.451881823329,
            },
        }
예제 #23
0
def screen_formulas(candidates: Iterable[str]) -> Iterable[str]:
    """[Filters unique chemical compositions]

    Arguments:
        candidates {Iterable[str]} -- [List of chemical formula candidates]

    Returns:
        Iterable[str] -- [Filtered list of candidates]
    """
    try:
        formulas = []
        for formula in candidates:
            comp = Composition(formula)
            if comp.reduced_formula not in formulas:
                formulas.append(comp.reduced_formula)
        return formulas
    except Exception as exc:
        print('-- Could not filter candidates --')
        raise (exc)
예제 #24
0
def get_magpie_descriptor(comp, descriptor_name):
    """
    Get descriptor data for elements in a compound from the Magpie data repository.

    Args:
        comp: (str) compound composition, eg: "NaCl"
        descriptor_name: name of Magpie descriptor needed. Find the entire list at
            https://bitbucket.org/wolverton/magpie/src/6ecf8d3b79e03e06ef55c141c350a08fbc8da849/Lookup%20Data/?at=master

    Returns: (list) of descriptor values for each element in the composition

    """
    magpiedata_lst = []
    magpiedata = collections.namedtuple(
        'magpiedata', 'element propname propvalue propunit amt')
    available_props = []
    for datafile in os.listdir('data/magpie_elementdata'):
        available_props.append(datafile.replace('.table', ''))
    if descriptor_name not in available_props:
        raise ValueError(
            "This descriptor is not available from the Magpie repository. Choose from {}"
            .format(available_props))
    el_amt = Composition(comp).get_el_amt_dict()
    unit = None
    with open('data/magpie_elementdata/README.txt', 'r') as readme_file:
        readme_file_line = readme_file.readlines()
        for lineno, line in enumerate(readme_file_line, 1):
            if descriptor_name + '.table' in line:
                if 'Units: ' in readme_file_line[lineno + 1]:
                    unit = readme_file_line[lineno +
                                            1].split(':')[1].strip('\n')
    with open('data/magpie_elementdata/' + descriptor_name + '.table',
              'r') as descp_file:
        lines = descp_file.readlines()
        for el in el_amt:
            atomic_no = Element(el).Z
            magpiedata_lst.append(
                magpiedata(element=el,
                           propname=descriptor_name,
                           propvalue=float(lines[atomic_no - 1]),
                           propunit=unit,
                           amt=el_amt[el]))
    return magpiedata_lst
예제 #25
0
    def featurize(self,
                  compositions: Iterable[str],
                  log_every_n: int = 1000) -> np.ndarray:
        """Calculate features for crystal compositions.

    Parameters
    ----------
    compositions: Iterable[str]
      Iterable sequence of composition strings, e.g. "MoS2".
    log_every_n: int, default 1000
      Logging messages reported every `log_every_n` samples.

    Returns
    -------
    features: np.ndarray
      A numpy array containing a featurized representation of
      `compositions`.

    """

        # Convert iterables to list
        compositions = list(compositions)

        try:
            from pymatgen import Composition
        except ModuleNotFoundError:
            raise ValueError("This class requires pymatgen to be installed.")

        features = []
        for idx, composition in enumerate(compositions):
            if idx % log_every_n == 0:
                logger.info("Featurizing datapoint %i" % idx)
            try:
                c = Composition(composition)
                features.append(self._featurize(c))
            except:
                logger.warning(
                    "Failed to featurize datapoint %i. Appending empty array" %
                    idx)
                features.append(np.array([]))

        features = np.asarray(features)
        return features
예제 #26
0
    def test_column_attr(self):
        """
        Test that the autofeaturizer object correctly takes in composition_col,
        structure_col, bandstruct_col, and dos_col, and checks that
        fit_and_transform()
        works correctly with the attributes.
        """

        # Modification of test_featurize_composition with AutoFeaturizer parameter
        target = "K_VRH"
        df = copy.copy(self.test_df[['composition', target]].iloc[:self.limit])
        af = AutoFeaturizer(composition_col="composition", preset="best", ignore_errors=False)
        df = af.fit_transform(df, target)

        self.assertEqual(df["LUMO_element"].iloc[0], "Nb")
        self.assertTrue("composition" not in df.columns)

        df = self.test_df[["composition", target]].iloc[:self.limit]
        df["composition"] = [Composition(s) for s in df["composition"]]
        af = AutoFeaturizer(composition_col="composition", preset="best")
        df = af.fit_transform(df, target)
        self.assertEqual(df["LUMO_element"].iloc[0], "Nb")
        self.assertTrue("composition" not in df.columns)

        # Modification of test_featurize_structure with AutoFeaturizer parameter
        target = "K_VRH"
        df = copy.copy(self.test_df[['structure', target]].iloc[:self.limit])
        af = AutoFeaturizer(structure_col="structure", preset="fast")
        df = af.fit_transform(df, target)
        self.assertTrue("vpa" in df.columns)
        self.assertTrue("HOMO_character" in df.columns)
        self.assertTrue("composition" not in df.columns)
        self.assertTrue("structure" not in df.columns)

        df = copy.copy(self.test_df[['structure', target]].iloc[:self.limit])
        df["structure"] = [s.as_dict() for s in df["structure"]]
        af = AutoFeaturizer(structure_col="structure", preset="fast")
        df = af.fit_transform(df, target)
        self.assertTrue("vpa" in df.columns)
        self.assertTrue("HOMO_character" in df.columns)
        self.assertTrue("composition" not in df.columns)
        self.assertTrue("structure" not in df.columns)
예제 #27
0
    def test_from_string(self):
        rxn = BalancedReaction({
            Composition("Li"): 4,
            Composition("O2"): 1
        }, {Composition("Li2O"): 2})
        self.assertEqual(rxn,
                         BalancedReaction.from_string("4 Li + O2 -> 2Li2O"))

        rxn = BalancedReaction({Composition("Li(NiO2)3"): 1}, {
                                    Composition("O2"): 0.5,
                                    Composition("Li(NiO2)2"): 1,
                                    Composition("NiO"): 1
                                })

        self.assertEqual(
            rxn,
            BalancedReaction.from_string(
                "1.000 Li(NiO2)3 -> 0.500 O2 + 1.000 Li(NiO2)2 + 1.000 NiO"))
예제 #28
0
파일: thermo.py 프로젝트: FilipchukB/P1
    def get_entries(self, chemsys):
        """
        Get all entries in a chemsys from materials

        Args:
            chemsys(str): a chemical system represented by string elements seperated by a dash (-)

        Returns:
            set(ComputedEntry): a set of entries for this system
        """

        self.logger.info("Getting entries for: {}".format(chemsys))

        new_q = dict(self.query)
        new_q["chemsys"] = {"$in": list(chemsys_permutations(chemsys))}
        fields = [
            "structure", self.materials.key, "thermo.energy_per_atom",
            "composition", "calc_settings"
        ]
        data = list(self.materials.query(fields, new_q))

        all_entries = []

        for d in data:
            comp = Composition(d["composition"])
            entry = ComputedEntry(
                comp,
                d["thermo"]["energy_per_atom"] * comp.num_atoms,
                0.0,
                parameters=d["calc_settings"],
                entry_id=d[self.materials.key],
                data={
                    "oxide_type":
                    oxide_type(Structure.from_dict(d["structure"]))
                })

            all_entries.append(entry)

        self.logger.info("Total entries in {} : {}".format(
            chemsys, len(all_entries)))

        return all_entries
예제 #29
0
파일: data.py 프로젝트: sailfish009/CAMD
def get_chemsys(formula_or_structure, seperator='-'):
    """
    Gets a sorted, character-delimited set of elements, e.g.
    Fe-Ni-O or O-Ti

    Args:
        formula_or_structure (str, Structure): formula or structure
            for which to get chemical system
        separator (str): separator for the chemsys elements

    Returns:
        (str): separated

    """
    if isinstance(formula_or_structure, Structure):
        formula = formula_or_structure.composition.reduced_formula
    else:
        formula = formula_or_structure
    elements = [str(el) for el in Composition(formula)]
    return seperator.join(sorted(elements))
예제 #30
0
def get_atomic_lists_and_numbers(compositions):

    # get atom number
    atom_lists = np.empty(118, dtype=object)
    atoms_duplicated = []
    atomic_numbers_duplicated = []
    for line in compositions:
        if line == 'nan':
            line = 'NaN'
        atom_list = Composition(line[0])
        #atom_list = Composition(line)
        for element in atom_list:
            atomic_numbers_duplicated.append(element.Z - 1)
            atom_lists[element.Z - 1] = element.symbol

    # reduce duplicate
    atomic_numbers = np.array(list(set(atomic_numbers_duplicated)))
    atomic_numbers = np.sort(atomic_numbers, axis=0)

    return atom_lists, atomic_numbers
예제 #31
0
    def test_prediction(self):
        sp = SubstitutionPredictor(threshold = 8e-3)
        result = sp.list_prediction(['Na+', 'Cl-'], to_this_composition = True)[5]
        cprob = sp.p.cond_prob_list(result['substitutions'].keys(),
                                    result['substitutions'].values())
        self.assertAlmostEqual(result['probability'], cprob)
        self.assertEqual(set(result['substitutions'].values()), set(['Na+', 'Cl-']))

        result = sp.list_prediction(['Na+', 'Cl-'], to_this_composition = False)[5]
        cprob = sp.p.cond_prob_list(result['substitutions'].keys(),
                                    result['substitutions'].values())
        self.assertAlmostEqual(result['probability'], cprob)
        self.assertNotEqual(set(result['substitutions'].values()),
                            set(['Na+', 'Cl-']))

        c = Composition({'Ag2+' : 1, 'Cl-' : 2})
        result = sp.composition_prediction(c, to_this_composition = True)[2]
        self.assertEqual(set(result['substitutions'].values()), set(c.elements))
        result = sp.composition_prediction(c, to_this_composition = False)[2]
        self.assertEqual(set(result['substitutions'].keys()), set(c.elements))
예제 #32
0
    def test_featurize_composition(self):
        """
        Test automatic featurization while only considering formula/composition.
        """
        target = "K_VRH"

        # When compositions are strings
        df = copy.copy(self.test_df[["composition", target]].iloc[: self.limit])
        af = AutoFeaturizer(preset="express")
        df = af.fit_transform(df, target)
        self.assertAlmostEqual(df["MagpieData minimum Number"].iloc[2], 14.0)
        self.assertTrue("composition" not in df.columns)

        # When compositions are Composition objects
        df = self.test_df[["composition", target]].iloc[: self.limit]
        df["composition"] = [Composition(s) for s in df["composition"]]
        af = AutoFeaturizer(preset="express")
        df = af.fit_transform(df, target)
        self.assertAlmostEqual(df["MagpieData minimum Number"].iloc[2], 14.0)
        self.assertTrue("composition" not in df.columns)
예제 #33
0
def test_energy_window(mocker):
    mock_bs = mocker.MagicMock()
    mock_bs.efermi = 0
    mock_bs.is_metal.return_value = True

    stub_vasprun = mocker.MagicMock()
    stub_vasprun.final_structure.composition = Composition("MgO2")
    stub_vasprun.get_band_structure.return_value = mock_bs

    energy = {
        "1": [
            np.array([[-0.2, -0.1, -0.3, -0.1], [-0.2, -0.1, -0.3, 0.1],
                      [1.2, 1.3, 1.1, 1.2]])
        ]
    }
    distances = [[0.0, 1.0]]
    labels = ["A", "GAMMA"]
    label_distances = [0.0, 1.0]
    plot_data = {
        "energy": energy,
        "distances": distances,
        "vbm": None,
        "cbm": None
    }

    mock_bsp = mocker.patch("vise.analyzer.vasp.plot_band.BSPlotter",
                            auto_spec=True)
    mock_bsp.return_value.bs_plot_data.return_value = plot_data
    mock_bsp.return_value.get_ticks_old.return_value = {
        "label": labels,
        "distance": distances[0]
    }

    plot_info = BandPlotInfoFromVasp(stub_vasprun,
                                     "KPOINTS",
                                     energy_window=[0.0, 1.0
                                                    ]).make_band_plot_info()

    assert (plot_info.band_info_set[0].band_energies == [[[[
        -0.2, -0.1, -0.3, 0.1
    ]]]])
예제 #34
0
def compute_grav_cap(comp, wi, remove=True):
    """compute_grav_cap
    Computes the gravimetric capacity of a composition.
    :param comp: Composition dictionary object.
    :param wi: String which is the symbol of the working ion.
    :param remove: Are we removing? If not, we're inserting.
    :return: Gravimetric capacity in mAh/g.
    """
    c = comp.as_dict()
    weight = comp.weight
    wi_charge = mobile_ion_charges[wi]
    if remove:
        num_wi = max_removal(c)
    else:
        num_wi = max_insertion(c, wi)
        wi_comp = Composition(wi)
        weight += wi_comp.weight * num_wi
    print num_wi, wi_charge
    cap = num_wi * wi_charge * ELECTRON_TO_AMPERE_HOURS
    grav_cap = cap / (weight / 1000)
    return grav_cap
예제 #35
0
파일: mpsnl.py 프로젝트: cmgtam/MPWorks
def get_meta_from_structure(structure):
    # TODO: this won't work for molecules
    meta = {}
    meta['nsites'] = len(structure.sites)
    meta['elements'] = list(set([el.symbol for el in structure.composition.elements]))
    meta['nelements'] = len(meta['elements'])
    meta['formula'] = structure.composition.formula
    meta['formula_red'] = structure.composition.reduced_formula
    meta['formula_abc_red'] = Composition.from_formula(structure.composition.reduced_formula).alphabetical_formula
    meta['composition_dict'] = structure.composition.to_dict
    meta['anonymized_formula'] = structure.composition.anonymized_formula
    meta['chemsystem'] = '-'.join(sorted(list(set([e.symbol for e in structure.composition.elements]))))  # the complex logic set/list is to prevent duplicates if there are multiple oxidation states
    meta['is_ordered'] = structure.is_ordered

    #promixity warning:
    meta['proximity_warning'] = False
    for (s1, s2) in itertools.combinations(structure._sites, 2):
        if s1.distance(s2) < Structure.DISTANCE_TOLERANCE:
            meta['proximity_warning'] = True

    return meta
예제 #36
0
 def test_to_from_dict(self):
     rct = {
         Composition('K2SO4'): 3,
         Composition('Na2S'): 1,
         Composition('Li'): 24
     }
     prod = {
         Composition('KNaS'): 2,
         Composition('K2S'): 2,
         Composition('Li2O'): 12
     }
     rxn = BalancedReaction(rct, prod)
     d = rxn.as_dict()
     new_rxn = BalancedReaction.from_dict(d)
     for comp in new_rxn.all_comp:
         self.assertEqual(new_rxn.get_coeff(comp), rxn.get_coeff(comp))
예제 #37
0
def create_df():
    newcoll = db['abc3']
    newcoll.drop()
    x = 0
    for doc in db['pauling_file_min_tags'].find().batch_size(75):
        x += 1
        if x % 1000 == 0:
            print x
        if doc['metadata']['_structure']['anonymized_formula'] == 'ABC3' and doc['is_ht'] in [True,False] \
                and 'TiO3' in doc['metadata']['_structure']['reduced_cell_formula']:
            newcoll.insert(doc)
    cursor = newcoll.find()
    df = pd.DataFrame(list(cursor))
    for i, row in df.iterrows():
        df.set_value(i, 'reduced_cell_formula',
                     row['metadata']['_structure']['reduced_cell_formula'])
        try:
            df.set_value(
                i, 'space_group',
                int(row['metadata']['_Springer']['geninfo']['Space Group']))
        except:
            df.set_value(i, 'space_group', None)
        try:
            df.set_value(
                i, 'density',
                float(row['metadata']['_Springer']['geninfo']
                      ['Density'].split()[2]))
        except IndexError as e:
            df.set_value(i, 'density', None)
        structure = Structure.from_dict(row['structure'])
        num_density = (structure.num_sites / structure.volume)
        no_of_atoms = Composition(structure.composition).num_atoms
        num_vol = (structure.volume / no_of_atoms)
        df.set_value(i, 'number_density', num_density)
        df.set_value(i, 'number_volume', num_vol)
        if row['metadata']['_structure']['is_ordered']:
            df.set_value(i, 'is_ordered', 1)
        else:
            df.set_value(i, 'is_ordered', 0)
    df.to_pickle('abc3.pkl')
예제 #38
0
def test_vasp_band_plotter(is_metal, expected_band_edge, mocker):
    mock_bs = mocker.MagicMock()
    mock_bs.efermi = 10
    mock_bs.is_metal.return_value = is_metal

    stub_vasprun = mocker.MagicMock()
    stub_vasprun.final_structure.composition = Composition("MgO2")
    stub_vasprun.get_band_structure.return_value = mock_bs

    energy = {"1": [np.array([[0.1], [0.2], [0.3]])]}
    distances = [np.array([0.0, 0.1, 0.2])]
    labels = ["A", "$A_0$", "GAMMA"]
    label_distances = [0.0, 0.1, 0.2]
    plot_data = {
        "energy": energy,
        "distances": distances,
        "vbm": [[0, -100]],
        "cbm": [[1, 100], [2, 100]]
    }

    mock_bsp = mocker.patch("vise.analyzer.vasp.plot_band.BSPlotter",
                            auto_spec=True)
    mock_bsp.return_value.bs_plot_data.return_value = plot_data
    mock_bsp.return_value.get_ticks_old.return_value = {
        "label": labels,
        "distance": [0.0, 0.1, 0.2]
    }

    plot_info = BandPlotInfoFromVasp(stub_vasprun,
                                     "KPOINTS").make_band_plot_info()

    expected_x_ticks = XTicks(labels=["A", "${\\rm A}_0$", "Γ"],
                              distances=label_distances)

    assert plot_info.band_info_set[0].band_energies == [[[[0.1], [0.2],
                                                          [0.3]]]]
    assert plot_info.band_info_set[0].band_edge == expected_band_edge
    assert plot_info.distances_by_branch == [[0.0, 0.1, 0.2]]
    assert plot_info.x_ticks == expected_x_ticks
    assert plot_info.title == "MgO$_{2}$"
예제 #39
0
def get_random_structure():
    print("input the formula of structure like this: ")
    print("(Fe3O4)4")
    print("or input the formula and spacegroup like this ")
    print("Si4O8  20")
    wait_sep()
    in_str=""
    while in_str=="":
       in_str=input().strip().split()
    
    if len(in_str)==1: 
       spgRange=[1,230]
       tag=False
    elif len(in_str)==2:
       spgRange=[int(in_str[1]),int(in_str[1])+1]
       tag=True
    else:
       print("unknow format")
       os._exit()

    comp=Composition(in_str[0])
    elem=[el.symbol for el in comp]
    num_atom=[int(comp[el]) for el in elem]
    i=124456
    scale=1.5
    while True:
        random.seed(i)
        spg=np.random.randint(spgRange[0],spgRange[1])
        print("try space group %s"%(spg))
        i+=1
        rc=random_crystal(spg,elem, num_atom, scale)
        pmg_structure=rc.prim_struct
        if pmg_structure is not None:
           print("Generate random structure with spg: %d  natom: %d"%(spg, len(pmg_structure)))
           print(pmg_structure)
           pmg_structure.to('poscar','random_spg_'+str(spg)+'.vasp')
           return
        if tag:
           print("Failed to generate structure with spg: %d"%(spg)) 
           return 
예제 #40
0
def get_meta_from_structure(structure):
    """
    Used by `structure_to_mock_job`, to "fill out" a job document.
    :param structure: pymatgen structure object
    :return: (dict) structure metadata
    """
    comp = structure.composition
    elsyms = sorted(set([e.symbol for e in comp.elements]))
    meta = {
        'nsites': len(structure),
        'elements': elsyms,
        'nelements': len(elsyms),
        'formula': comp.formula,
        'reduced_cell_formula': comp.reduced_formula,
        'reduced_cell_formula_abc':
        Composition(comp.reduced_formula).alphabetical_formula,
        'anonymized_formula': comp.anonymized_formula,
        'chemsystem': '-'.join(elsyms),
        'is_ordered': structure.is_ordered,
        'is_valid': structure.is_valid(tol=0.50)
    }
    return meta
예제 #41
0
파일: snl_to_wf.py 프로젝트: cmgtam/MPWorks
def snl_to_wf_ggau(snl):

    # TODO: add WF meta

    fws = []
    connections = {}

    # add the root FW (GGA+U)
    spec = _snl_to_spec(snl, enforce_gga=False)
    tasks = [VaspWriterTask(), _get_custodian_task(spec)]
    fws.append(FireWork(tasks, spec, fw_id=1))

    # add GGA insertion to DB
    spec = {'task_type': 'VASP db insertion', '_priority': 2,
            '_category': 'VASP'}
    spec.update(_get_metadata(snl))
    fws.append(FireWork([VaspToDBTask()], spec, fw_id=2))
    connections[1] = 2
    mpvis = MPVaspInputSet()

    spec['vaspinputset_name'] = mpvis.__class__.__name__

    return Workflow(fws, connections, name=Composition.from_formula(snl.structure.composition.reduced_formula).alphabetical_formula)
예제 #42
0
파일: test_resio.py 프로젝트: muhrin/SPLpy
    def test_init(self):
        filepath = os.path.join(test_dir, 'input/23221-ZDsSsJoEW14.res')
        res = Res.from_file(filepath)
        comp = res.structure.composition
        self.assertEqual(comp, Composition.from_formula("C194H60"))
        #print res

        res_string = """TITL
CELL 1.0 1.0 1.0 1.0 90.0 90.0 90.0
LATT -1
SFAC Si F
Si 1 0.000000 0.000000 0.000000 1.0
F 2 0.750000 0.500000 0.750000 1.0"""
        res = Res.from_string(res_string)
        self.assertEqual(res.structure.composition, Composition("SiF"))
        self.assertEquals(res.structure.num_sites, 2)
        #print res

        struct = Structure(Lattice.orthorhombic(2.5, 3.5, 7.0), ['Na', 'Cl'], [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
        res = Res(struct)
        res_string = str(res)
        lines = res_string.splitlines()
        self.assertEqual(lines[1], "CELL 1.0 2.5 3.5 7.0 90.0 90.0 90.0")
예제 #43
0
 def test_to_from_dict(self):
     d = self.vinput.to_dict
     vinput = VaspInput.from_dict(d)
     comp = vinput["POSCAR"].structure.composition
     self.assertEqual(comp, Composition.from_formula("Fe4P4O16"))
예제 #44
0
def snl_to_wf(snl, parameters=None):
    fws = []
    connections = {}
    parameters = parameters if parameters else {}

    snl_priority = parameters.get('priority', 1)
    priority = snl_priority * 2  # once we start a job, keep going!

    f = Composition.from_formula(snl.structure.composition.reduced_formula).alphabetical_formula

    # add the SNL to the SNL DB and figure out duplicate group
    tasks = [AddSNLTask()]
    spec = {'task_type': 'Add to SNL database', 'snl': snl.to_dict, '_queueadapter': QA_DB, '_priority': snl_priority}
    if 'snlgroup_id' in parameters and isinstance(snl, MPStructureNL):
        spec['force_mpsnl'] = snl.to_dict
        spec['force_snlgroup_id'] = parameters['snlgroup_id']
        del spec['snl']
    fws.append(FireWork(tasks, spec, name=get_slug(f + '--' + spec['task_type']), fw_id=0))
    connections[0] = [1]

    # run GGA structure optimization
    spec = _snl_to_spec(snl, enforce_gga=True)
    spec['_priority'] = priority
    spec['_queueadapter'] = QA_VASP
    tasks = [VaspWriterTask(), get_custodian_task(spec)]
    fws.append(FireWork(tasks, spec, name=get_slug(f + '--' + spec['task_type']), fw_id=1))

    # insert into DB - GGA structure optimization
    spec = {'task_type': 'VASP db insertion', '_priority': priority,
            '_allow_fizzled_parents': True, '_queueadapter': QA_DB}
    fws.append(
        FireWork([VaspToDBTask()], spec, name=get_slug(f + '--' + spec['task_type']), fw_id=2))
    connections[1] = [2]

    if not parameters.get('skip_bandstructure', False):
        spec = {'task_type': 'Controller: add Electronic Structure v2', '_priority': priority,
                '_queueadapter': QA_CONTROL}
        fws.append(
            FireWork([AddEStructureTask()], spec, name=get_slug(f + '--' + spec['task_type']),
                     fw_id=3))
        connections[2] = [3]

    # determine if GGA+U FW is needed
    incar = MPVaspInputSet().get_incar(snl.structure).to_dict

    if 'LDAU' in incar and incar['LDAU']:
        spec = _snl_to_spec(snl, enforce_gga=False)
        del spec['vasp']  # we are stealing all VASP params and such from previous run
        spec['_priority'] = priority
        spec['_queueadapter'] = QA_VASP
        fws.append(FireWork(
            [VaspCopyTask(), SetupGGAUTask(),
             get_custodian_task(spec)], spec, name=get_slug(f + '--' + spec['task_type']),
            fw_id=10))
        connections[2].append(10)

        spec = {'task_type': 'VASP db insertion', '_queueadapter': QA_DB,
                '_allow_fizzled_parents': True, '_priority': priority}
        fws.append(
            FireWork([VaspToDBTask()], spec, name=get_slug(f + '--' + spec['task_type']), fw_id=11))
        connections[10] = [11]

        if not parameters.get('skip_bandstructure', False):
            spec = {'task_type': 'Controller: add Electronic Structure v2', '_priority': priority,
                    '_queueadapter': QA_CONTROL}
            fws.append(
                FireWork([AddEStructureTask()], spec, name=get_slug(f + '--' + spec['task_type']),
                         fw_id=12))
            connections[11] = [12]

    wf_meta = get_meta_from_structure(snl.structure)
    wf_meta['run_version'] = 'May 2013 (1)'

    if '_materialsproject' in snl.data and 'submission_id' in snl.data['_materialsproject']:
        wf_meta['submission_id'] = snl.data['_materialsproject']['submission_id']
    return Workflow(fws, connections, name=Composition.from_formula(
        snl.structure.composition.reduced_formula).alphabetical_formula, metadata=wf_meta)
 if x % 1000 == 0:
     print x
 if (doc['metadata']['_Springer']['geninfo']['Refined Formula']).replace(u'\u2013', '-') != '-':
     form = doc['metadata']['_Springer']['geninfo']['Refined Formula']
 else:
     form = doc['metadata']['_Springer']['geninfo']['Alphabetic Formula']
 form = form.replace('[', '')
 form = form.replace(']', '')
 try:
     redform = Composition(form).reduced_formula
 except:
     print 'Could not parse composition for key:{} with composition:{}'.format(doc['key'], form)
     y += 1
     continue
 alphaform_comp = Composition(redform).alphabetical_formula
 alphaform_frac = Composition(alphaform_comp).fractional_composition
 structure_comp = doc['metadata']['_structure']['reduced_cell_formula_abc']
 structure_frac = Composition(structure_comp).fractional_composition
 if alphaform_frac != structure_frac and not alphaform_frac.almost_equals(structure_frac, 0.15):
     for document in db['pauling_file'].find({'key': doc['key']}):
         try:
             struct_lst = CifParser.from_string(document['cif_string']).get_structures()
         except:
             pass
         if len(struct_lst) > 1:
             matched = False
             for struct in struct_lst[1:]:
                 another_frac = Composition(struct.composition).fractional_composition
                 if alphaform_frac == another_frac or alphaform_frac.almost_equals(another_frac, 0.15):
                     matched = True
                     # '''
예제 #46
0
    def run_task(self, fw_spec):
        print 'sleeping 10s for Mongo'
        time.sleep(10)
        print 'done sleeping'
        print 'the gap is {}, the cutoff is {}'.format(fw_spec['analysis']['bandgap'], self.gap_cutoff)

        if fw_spec['analysis']['bandgap'] >= self.gap_cutoff:
            print 'Adding more runs...'
            type_name = 'GGA+U' if 'GGA+U' in fw_spec['prev_task_type'] else 'GGA'

            snl = StructureNL.from_dict(fw_spec['mpsnl'])
            f = Composition.from_formula(snl.structure.composition.reduced_formula).alphabetical_formula

            fws = []
            connections = {}

            priority = fw_spec['_priority']

            # run GGA static
            spec = fw_spec  # pass all the items from the current spec to the new
            #  one
            spec.update({'task_type': '{} static'.format(type_name), '_queueadapter': QA_VASP,
                         '_dupefinder': DupeFinderVasp().to_dict(), '_priority': priority})
            fws.append(
                FireWork(
                    [VaspCopyTask({'use_CONTCAR': True}), SetupStaticRunTask(),
                     get_custodian_task(spec)], spec, name=get_slug(f+'--'+spec['task_type']), fw_id=-10))

            # insert into DB - GGA static
            spec = {'task_type': 'VASP db insertion', '_queueadapter': QA_DB,
                    '_allow_fizzled_parents': True, '_priority': priority}
            fws.append(
                FireWork([VaspToDBTask()], spec, name=get_slug(f+'--'+spec['task_type']), fw_id=-9))
            connections[-10] = -9

            # run GGA Uniform
            spec = {'task_type': '{} Uniform'.format(type_name), '_queueadapter': QA_VASP,
                    '_dupefinder': DupeFinderVasp().to_dict(), '_priority': priority}
            fws.append(FireWork(
                [VaspCopyTask({'use_CONTCAR': False}), SetupNonSCFTask({'mode': 'uniform'}),
                 get_custodian_task(spec)], spec, name=get_slug(f+'--'+spec['task_type']), fw_id=-8))
            connections[-9] = -8

            # insert into DB - GGA Uniform
            spec = {'task_type': 'VASP db insertion', '_queueadapter': QA_DB,
                    '_allow_fizzled_parents': True, '_priority': priority}
            fws.append(
                FireWork([VaspToDBTask({'parse_uniform': True})], spec, name=get_slug(f+'--'+spec['task_type']),
                         fw_id=-7))
            connections[-8] = -7

            # run GGA Band structure
            spec = {'task_type': '{} band structure'.format(type_name), '_queueadapter': QA_VASP,
                    '_dupefinder': DupeFinderVasp().to_dict(), '_priority': priority}
            fws.append(FireWork([VaspCopyTask({'use_CONTCAR': False}), SetupNonSCFTask({'mode': 'line'}),
                                 get_custodian_task(spec)], spec, name=get_slug(f+'--'+spec['task_type']),
                                fw_id=-6))
            connections[-7] = -6

            # insert into DB - GGA Band structure
            spec = {'task_type': 'VASP db insertion', '_queueadapter': QA_DB,
                    '_allow_fizzled_parents': True, '_priority': priority}
            fws.append(FireWork([VaspToDBTask({})], spec, name=get_slug(f+'--'+spec['task_type']), fw_id=-5))
            connections[-6] = -5

            wf = Workflow(fws, connections)

            print 'Done adding more runs...'

            return FWAction(additions=wf)
        return FWAction()
예제 #47
0
       vector = zeros((MAX_Z))
       for element in composition:
               fraction = composition.get_atomic_fraction(element)
               vector[element.Z - 1] = fraction
       return(vector)

# Extract materials and band gaps into lists, and construct naive feature set
materials = []
bandgaps = []
naiveFeatures = []

MAX_Z = 100 # maximum length of vector to hold naive feature set

for line in trainFile:
    split = str.split(line, ',')
    material = Composition(split[0])
    materials.append(material) #store chemical formulas
    naiveFeatures.append(naiveVectorize(material)) #create features from chemical formula
    bandgaps.append(float(split[1])) #store numerical values of band gaps

##############################################################################################################

# Establish baseline accuracy by "guessing the average" of the band gap set
# A good model should never do worse.
baselineError = mean(abs(mean(bandgaps) - bandgaps))
print("The MAE of always guessing the average band gap is: " + str(round(baselineError, 3)) + " eV")

##############################################################################################################

#alpha is a tuning parameter affecting how regression deals with collinear inputs
linear = linear_model.Ridge(alpha = 0.5)
예제 #48
0
    def run_task(self, fw_spec):
        if '_fizzled_parents' in fw_spec and not 'prev_vasp_dir' in fw_spec:
            prev_dir = get_loc(fw_spec['_fizzled_parents'][0]['launches'][0]['launch_dir'])
            update_spec = {}  # add this later when creating new FW
            fizzled_parent = True
            parse_dos = False
        else:
            prev_dir = get_loc(fw_spec['prev_vasp_dir'])
            update_spec = {'prev_vasp_dir': prev_dir,
                           'prev_task_type': fw_spec['prev_task_type'],
                           'run_tags': fw_spec['run_tags'], 'parameters': fw_spec.get('parameters')}
            fizzled_parent = False
            parse_dos = 'Uniform' in fw_spec['prev_task_type']
        if 'run_tags' in fw_spec:
            self.additional_fields['run_tags'] = fw_spec['run_tags']
        else:
            self.additional_fields['run_tags'] = fw_spec['_fizzled_parents'][0]['spec']['run_tags']

        if MOVE_TO_GARDEN_DEV:
            prev_dir = move_to_garden(prev_dir, prod=False)

        elif MOVE_TO_GARDEN_PROD:
            prev_dir = move_to_garden(prev_dir, prod=True)

        # get the directory containing the db file
        db_dir = os.environ['DB_LOC']
        db_path = os.path.join(db_dir, 'tasks_db.json')

        logging.basicConfig(level=logging.INFO)
        logger = logging.getLogger('MPVaspDrone')
        logger.setLevel(logging.INFO)
        sh = logging.StreamHandler(stream=sys.stdout)
        sh.setLevel(getattr(logging, 'INFO'))
        logger.addHandler(sh)

        with open(db_path) as f:
            db_creds = json.load(f)
            drone = MPVaspDrone(
                host=db_creds['host'], port=db_creds['port'],
                database=db_creds['database'], user=db_creds['admin_user'],
                password=db_creds['admin_password'],
                collection=db_creds['collection'], parse_dos=parse_dos,
                additional_fields=self.additional_fields,
                update_duplicates=self.update_duplicates)
            t_id, d = drone.assimilate(prev_dir, launches_coll=LaunchPad.auto_load().launches)

        mpsnl = d['snl_final'] if 'snl_final' in d else d['snl']
        snlgroup_id = d['snlgroup_id_final'] if 'snlgroup_id_final' in d else d['snlgroup_id']
        update_spec.update({'mpsnl': mpsnl, 'snlgroup_id': snlgroup_id})

        print 'ENTERED task id:', t_id
        stored_data = {'task_id': t_id}
        if d['state'] == 'successful':
            update_spec['analysis'] = d['analysis']
            update_spec['output'] = d['output']
            return FWAction(stored_data=stored_data, update_spec=update_spec)

        # not successful - first test to see if UnconvergedHandler is needed
        if not fizzled_parent:
            unconverged_tag = 'unconverged_handler--{}'.format(fw_spec['prev_task_type'])
            output_dir = last_relax(os.path.join(prev_dir, 'vasprun.xml'))
            ueh = UnconvergedErrorHandler(output_filename=output_dir)
            if ueh.check() and unconverged_tag not in fw_spec['run_tags']:
                print 'Unconverged run! Creating dynamic FW...'

                spec = {'prev_vasp_dir': prev_dir,
                        'prev_task_type': fw_spec['task_type'],
                        'mpsnl': mpsnl, 'snlgroup_id': snlgroup_id,
                        'task_type': fw_spec['prev_task_type'],
                        'run_tags': list(fw_spec['run_tags']),
                        'parameters': fw_spec.get('parameters'),
                        '_dupefinder': DupeFinderVasp().to_dict(),
                        '_priority': fw_spec['_priority']}

                snl = StructureNL.from_dict(spec['mpsnl'])
                spec['run_tags'].append(unconverged_tag)
                spec['_queueadapter'] = QA_VASP

                fws = []
                connections = {}

                f = Composition.from_formula(
                    snl.structure.composition.reduced_formula).alphabetical_formula

                fws.append(FireWork(
                    [VaspCopyTask({'files': ['INCAR', 'KPOINTS', 'POSCAR', 'POTCAR', 'CONTCAR'],
                                   'use_CONTCAR': False}), SetupUnconvergedHandlerTask(),
                     get_custodian_task(spec)], spec, name=get_slug(f + '--' + spec['task_type']),
                    fw_id=-2))

                spec = {'task_type': 'VASP db insertion', '_allow_fizzled_parents': True,
                        '_priority': fw_spec['_priority'], '_queueadapter': QA_DB,
                        'run_tags': list(fw_spec['run_tags'])}
                spec['run_tags'].append(unconverged_tag)
                fws.append(
                    FireWork([VaspToDBTask()], spec, name=get_slug(f + '--' + spec['task_type']),
                             fw_id=-1))
                connections[-2] = -1

                wf = Workflow(fws, connections)

                return FWAction(detours=wf)

        # not successful and not due to convergence problem - FIZZLE
        raise ValueError("DB insertion successful, but don't know how to fix this FireWork! Can't continue with workflow...")