def predict(self, Xnew, point=None, diag=False, pred_noise=False, model=None): R""" Return the mean vector and covariance matrix of the conditional distribution as numpy arrays, given a `point`, such as the MAP estimate or a sample from a `trace`. Parameters ---------- Xnew: array-like Function input values. If one-dimensional, must be a column vector with shape `(n, 1)`. point: pymc.model.Point A specific point to condition on. diag: bool If `True`, return the diagonal instead of the full covariance matrix. Default is `False`. pred_noise: bool Whether or not observation noise is included in the conditional. Default is `False`. """ mu, cov = self._predict_at(Xnew, diag, pred_noise) return replace_with_values([mu, cov], replacements=point, model=model)
def predict( self, Xnew, point=None, diag=False, pred_noise=False, given=None, jitter=0.0, model=None ): R""" Return the mean vector and covariance matrix of the conditional distribution as numpy arrays, given a `point`, such as the MAP estimate or a sample from a `trace`. Parameters ---------- Xnew: array-like Function input values. If one-dimensional, must be a column vector with shape `(n, 1)`. point: pymc.model.Point A specific point to condition on. diag: bool If `True`, return the diagonal instead of the full covariance matrix. Default is `False`. pred_noise: bool Whether or not observation noise is included in the conditional. Default is `False`. given: dict Same as `conditional` method. jitter: scalar A small correction added to the diagonal of positive semi-definite covariance matrices to ensure numerical stability. For conditionals the default value is 0.0. """ if given is None: given = {} mu, cov = self._predict_at(Xnew, diag, pred_noise, given, jitter) return replace_with_values([mu, cov], replacements=point, model=model)