approx.random_fn(no_rand=True) approx.random_fn(no_rand=False) approx.histogram_logp.eval() def test_init_from_noize(self): with models.multidimensional_model()[1]: approx = Empirical.from_noise(100) assert approx.histogram.eval().shape == (100, 6) _model = models.simple_model()[1] with _model: pm.Potential('pot', tt.ones((10, 10))) _advi = ADVI() _fullrank_advi = FullRankADVI() _svgd = SVGD() @pytest.mark.parametrize( ['method', 'kwargs', 'error'], [('undefined', dict(), KeyError), (1, dict(), TypeError), (_advi, dict(start={}), None), (_fullrank_advi, dict(), None), (_svgd, dict(), None), ('advi', dict(), None), ('advi->fullrank_advi', dict(frac=.1), None), ('advi->fullrank_advi', dict(frac=1), ValueError), ('fullrank_advi', dict(), None), ('svgd', dict(), None), ('svgd', dict(start={}), None), ('svgd', dict(local_rv={_model.free_RVs[0]: (0, 1)}), ValueError)]) def test_fit(method, kwargs, error): with _model: if error is not None:
def test_from_empirical(another_simple_model): with another_simple_model: emp = Empirical.from_noise(1000) svgd = SVGD.from_empirical(emp) svgd.fit(20)