def clean_up_mesh(mesh, tol): new_mesh, _ = pymesh.remove_isolated_vertices(mesh) new_mesh, _ = pymesh.remove_duplicated_vertices(new_mesh) new_mesh, _ = pymesh.remove_duplicated_faces(new_mesh) new_mesh, _ = pymesh.remove_degenerated_triangles(new_mesh) new_mesh, _ = pymesh.collapse_short_edges(new_mesh, rel_threshold=0.2) return new_mesh
def map_boundary_to_sphere(mesh, basename): bd_mesh = pymesh.form_mesh(mesh.vertices, mesh.faces) bd_mesh, info = pymesh.remove_isolated_vertices(bd_mesh) bd_vertices = np.copy(bd_mesh.vertices) assembler = pymesh.Assembler(bd_mesh) L = assembler.assemble("graph_laplacian") # First, Laplacian smoothing to improve triangle quality. for i in range(100): c = np.mean(bd_vertices, axis=0) bd_vertices = bd_vertices - c r = np.amax(norm(bd_vertices, axis=1)) bd_vertices /= r bd_vertices += L * bd_vertices if i % 10 == 0: sphere_mesh = pymesh.form_mesh(bd_vertices, bd_mesh.faces) pymesh.save_mesh("{}_flow_{:03}.msh".format(basename, i), sphere_mesh) # Then, run mean curvature flow. sphere_mesh = pymesh.form_mesh(bd_vertices, bd_mesh.faces) sphere_mesh = mean_curvature_flow(sphere_mesh, 100, use_graph_laplacian=True) pymesh.save_mesh("{}_flow_final.msh".format(basename), sphere_mesh) bd_vertices = sphere_mesh.vertices # Lastly, project vertices onto unit sphere. bd_vertex_indices = info["ori_vertex_index"] bd_vertex_positions = np.divide(bd_vertices, norm(bd_vertices, axis=1).reshape((-1, 1))) return bd_vertex_indices, bd_vertex_positions
def fix_mesh(mesh, resolution): bbox_min, bbox_max = mesh.bbox diag_len = norm(bbox_max - bbox_min) target_len = diag_len * resolution rospy.loginfo("\tTarget resolution: {} mm".format(target_len)) count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices rospy.loginfo("\t#vertices: {}".format(num_vertices)) count += 1 if count > 2: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh
def finalMesh(z): poolWarning = None # Check if pools will overflow mesh if z > zMax: z = zMax poolWarning = 'The pool have a greater volume than the mesh can contain. Pool set to fill entire mesh.' # Create Bbox bMesh = createBbox(z) # Make intersection newMesh, bottomFaces, boolWarning = intersectAndBottomFaces(bMesh, z) # Create volume mesh volMesh = getVolMesh(newMesh, bottomFaces, z) volMesh.add_attribute('voxel_volume') volVol = volMesh.get_attribute('voxel_volume') volVol = sum(list(map(abs, volVol))) # Clean up mesh volMesh, info = pm.remove_isolated_vertices(volMesh) #print('num vertex removed', info["num_vertex_removed"]) volMesh, info = pm.remove_duplicated_faces(volMesh) return volMesh, volVol, poolWarning, poolWarning
def map_boundary_to_sphere(mesh, basename): bd_mesh = pymesh.form_mesh(mesh.vertices, mesh.faces); bd_mesh, info = pymesh.remove_isolated_vertices(bd_mesh); bd_vertices = np.copy(bd_mesh.vertices); assembler = pymesh.Assembler(bd_mesh); L = assembler.assemble("graph_laplacian"); # First, Laplacian smoothing to improve triangle quality. for i in range(100): c = np.mean(bd_vertices, axis=0); bd_vertices = bd_vertices - c; r = np.amax(norm(bd_vertices, axis=1)); bd_vertices /= r; bd_vertices += L * bd_vertices; if i%10 == 0: sphere_mesh = pymesh.form_mesh(bd_vertices, bd_mesh.faces); pymesh.save_mesh("{}_flow_{:03}.msh".format(basename, i), sphere_mesh); # Then, run mean curvature flow. sphere_mesh = pymesh.form_mesh(bd_vertices, bd_mesh.faces); sphere_mesh = mean_curvature_flow(sphere_mesh, 100, use_graph_laplacian=True); pymesh.save_mesh("{}_flow_final.msh".format(basename), sphere_mesh); bd_vertices = sphere_mesh.vertices; # Lastly, project vertices onto unit sphere. bd_vertex_indices = info["ori_vertex_index"]; bd_vertex_positions = np.divide(bd_vertices, norm(bd_vertices, axis=1).reshape((-1,1))); return bd_vertex_indices, bd_vertex_positions;
def clean_mesh(mesh, connected=True, fill_internals=False): print('\t - Cleaning mesh (this may take a moment)') vert_list = [] mesh, info = pymesh.remove_isolated_vertices(mesh) mesh, info = pymesh.remove_duplicated_vertices(mesh) mesh, info = pymesh.remove_degenerated_triangles(mesh) mesh, info = pymesh.remove_duplicated_faces(mesh) if connected or fill_internals: mesh_list = pymesh.separate_mesh(mesh, 'auto') max_verts = 0 print(' - Total number of meshes (ideally 1): %d' % len(mesh_list)) for mesh_obj in mesh_list: nverts = mesh_obj.num_vertices if nverts > max_verts: max_verts = nverts mesh = mesh_obj if fill_internals: for mesh_obj in mesh_list: if mesh_obj.num_vertices != max_verts: vert_list.append(mesh_obj.vertices) return mesh, vert_list return mesh, vert_list
def fix_mesh(mesh, detail=5e-3): # "normal": 5e-3 # "high": 2.5e-3 # "low": 2e-2 # "vlow": 2.5e-2 bbox_min, bbox_max = mesh.bbox diag_len = np.linalg.norm(bbox_max - bbox_min) if detail is None: detail = 5e-3 target_len = diag_len * detail print("Target resolution: {} mm".format(target_len)) count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-4) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_isolated_vertices(mesh) mesh, __ = pymesh.remove_duplicated_vertices(mesh, tol=1e-4) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_degenerated_triangles(mesh) mesh, __ = pymesh.remove_isolated_vertices(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices print("fix #v: {}".format(num_vertices)) count += 1 if count > 10: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh
def inc_remesh(mesh, detail="normal"): bbox_min, bbox_max = mesh.bbox diag_len = norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 5e-3 elif detail == "high": target_len = diag_len * 2.5e-3 elif detail == "low": target_len = diag_len * 2.5e-2 print("Target resolution: {} mm".format(target_len)) count = 1 # # mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) # mesh = pymesh.compute_outer_hull(mesh) # mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_isolated_vertices(mesh) num_vertices = mesh.num_vertices low = 4 / 5 * target_len high = 4 / 3 * target_len while True: print() print("[iteration " + str(count) + "]") # mesh, __ = pymesh.split_long_edges(mesh, high) # print("<split_long_edges> : DONE") # mesh, __ = pymesh.collapse_short_edges(mesh, low, preserve_feature=True) # print("<collapse_short_edges> : DONE") check_mesh(mesh) mesh = equalize_valences(mesh) print("<equalize_valences> : DONE") # mesh = tangential_relaxation(mesh) # print("<tangential_relaxation> : DONE") if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices print("#v: {}".format(num_vertices)) count += 1 if count > 10: break # mesh = pymesh.resolve_self_intersection(mesh) # mesh, __ = pymesh.remove_duplicated_faces(mesh) # mesh = pymesh.compute_outer_hull(mesh) # mesh, __ = pymesh.remove_duplicated_faces(mesh) # mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) # mesh, __ = pymesh.remove_isolated_vertices(mesh) check_mesh(mesh) return mesh
def fix_meshes(mesh, detail="normal"): meshCopy = mesh # copy/pasta of pymesh script fix_mesh from qnzhou, see pymesh on GitHub bbox_min, bbox_max = mesh.bbox diag_len = np.linalg.norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 5e-3 elif detail == "high": target_len = diag_len * 2.5e-3 elif detail == "low": target_len = diag_len * 1e-2 count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices count += 1 if count > 10: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) if is_mesh_broken(mesh, meshCopy) is True: if detail == "high": print( f'The function fix_meshes broke mesh, trying with lower details settings' ) fix_meshes(mesh, detail="normal") if detail == "normal": print( f'The function fix_meshes broke mesh, trying with lower details settings' ) fix_meshes(mesh, detail="low") if detail == "low": print( f'The function fix_meshes broke mesh, no lower settings can be applied, no fix was done' ) return meshCopy else: return mesh
def convert_obj2ply(obj_filename, ply_filename, recenter=False, center_mode='pt_center'): mesh = pymesh.load_mesh(obj_filename) pymesh.remove_isolated_vertices(mesh) if recenter: if center_mode == 'pt_center': center = np.mean(mesh.vertices, axis=0) elif center_mode == 'box_center': min_p = np.amin(mesh.vertices, axis=0) max_p = np.amax(mesh.vertices, axis=0) center = (min_p + max_p) / 2.0 new_vertices = mesh.vertices - center mesh = pymesh.form_mesh(new_vertices, mesh.faces) pymesh.save_mesh(ply_filename, mesh)
def _load_mesh(desc): path = desc['objs_dir'] objs = desc['objs'] mesh_list = [] for obj in eval(objs): obj_path = os.path.join(path, obj + '.obj') mesh_tmp = load_pc(obj_path) mesh_tmp, info = pymesh.remove_isolated_vertices(mesh_tmp) mesh_list.append(mesh_tmp) mesh = pymesh.merge_meshes(mesh_list) return mesh
def clean(vertices, faces, duplicate_tol=1e-12): mesh = pymesh.meshio.form_mesh(vertices, faces) mesh = pymesh.remove_isolated_vertices(mesh)[0] mesh = pymesh.remove_duplicated_vertices(mesh, tol=duplicate_tol)[0] mesh = remove_duplicated_faces(mesh)[0] # mesh = pymesh.remove_duplicated_faces(mesh, fins_only=True)[0] mesh = pymesh.remove_degenerated_triangles(mesh)[0] mesh = pymesh.resolve_self_intersection(mesh) # meshes = pymesh.separate_mesh(mesh) # for i, mesh in enumerate(meshes): # meshes[i] = make_face_normals_consistent(mesh) # mesh = pymesh.merge_meshes(meshes) return mesh.vertices, mesh.faces
def extract_intersecting_faces(mesh, selection): face_pairs = pymesh.detect_self_intersection(mesh); selected_faces = np.zeros(mesh.num_faces, dtype=bool); if selection is not None: selected_pairs = np.any(face_pairs == selection, axis=1); face_pairs = face_pairs[selected_pairs]; selected_faces[face_pairs[:,0]] = True; selected_faces[face_pairs[:,1]] = True; faces = mesh.faces[selected_faces]; intersecting_mesh = pymesh.form_mesh(mesh.vertices, faces); intersecting_mesh, __ = pymesh.remove_isolated_vertices(intersecting_mesh); return intersecting_mesh;
def extract_intersecting_faces(mesh, selection): face_pairs = pymesh.detect_self_intersection(mesh) selected_faces = np.zeros(mesh.num_faces, dtype=bool) if selection is not None: selected_pairs = np.any(face_pairs == selection, axis=1) face_pairs = face_pairs[selected_pairs] selected_faces[face_pairs[:, 0]] = True selected_faces[face_pairs[:, 1]] = True faces = mesh.faces[selected_faces] intersecting_mesh = pymesh.form_mesh(mesh.vertices, faces) intersecting_mesh, __ = pymesh.remove_isolated_vertices(intersecting_mesh) return intersecting_mesh
def remesh(path1): """ This function takes a path to the orginal shapenet model and subsample it nicely """ obj1 = pymesh.load_mesh(path1) obj1, info = pymesh.remove_isolated_vertices(obj1) print("Removed {} isolated vertices".format(info["num_vertex_removed"])) obj1, info = pymesh.remove_duplicated_vertices(obj1) print("Merged {} duplicated vertices".format(info["num_vertex_merged"])) obj1, _ = pymesh.remove_degenerated_triangles(obj1) if len(obj1.vertices) < 5000: while len(obj1.vertices) < 5000: obj1 = pymesh.subdivide(obj1) obj1 = pymesh.form_mesh(obj1.vertices, obj1.faces) return obj1
def link(path1): """ This function takes a path to the orginal shapenet model and subsample it nicely """ obj1 = pymesh.load_mesh(path1) # obj1, info = pymesh.remove_isolated_vertices(mesh) obj1, info = pymesh.remove_isolated_vertices(obj1) print("Removed {} isolated vertices".format(info["num_vertex_removed"])) obj1, info = pymesh.remove_duplicated_vertices(obj1) print("Merged {} duplicated vertices".format(info["num_vertex_merged"])) obj1, info = pymesh.remove_degenerated_triangles(obj1) new_mesh = pymesh.form_mesh( normalize_points.BoundingBox(torch.from_numpy(obj1.vertices)).numpy(), obj1.faces) return new_mesh
def read_trimesh(path, normal=False, clean=True): mesh = pymesh.load_mesh(path) if clean: mesh, info = pymesh.remove_isolated_vertices(mesh) print("Removed {} isolated vertices".format(info["num_vertex_removed"])) mesh, info = pymesh.remove_duplicated_vertices(mesh) print("Merged {} duplicated vertices".format(info["num_vertex_merged"])) mesh, info = pymesh.remove_degenerated_triangles(mesh) mesh = pymesh.form_mesh(mesh.vertices, mesh.faces) vertices = mesh.vertices if normal: mesh.add_attribute("vertex_normal") vertex_normals = mesh.get_attribute("vertex_normal").reshape(-1, 3) vertices = np.concatenate([vertices, vertex_normals], axis=-1) return vertices, mesh.faces
def fix_mesh(mesh): mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) log_mesh(mesh, "Remove degenerate faces") mesh, __ = pymesh.collapse_short_edges(mesh, MIN_RES, preserve_feature=True) log_mesh(mesh, "Collapse short edges") mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) log_mesh(mesh, "Remove self intersections") mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) log_mesh(mesh, "New hull, remove duplicates") mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.5, 5) log_mesh(mesh, "Remote obtuse faces") mesh, __ = pymesh.remove_isolated_vertices(mesh) log_mesh(mesh, "Remove isolated vertices") return mesh
def execute(self, context): scene = context.scene pymesh_props = scene.pymesh obj_a = context.active_object mesh_a = import_object(context, obj_a) pymesh_r, info = pymesh.remove_degenerated_triangles(mesh_a) pymesh_r, info = pymesh.remove_obtuse_triangles(pymesh_r) pymesh_r, info = pymesh.remove_duplicated_faces(pymesh_r) pymesh_r, info = pymesh.collapse_short_edges(pymesh_r) pymesh_r, info = pymesh.remove_duplicated_vertices(pymesh_r) pymesh_r, info = pymesh.remove_isolated_vertices(pymesh_r) off_name = "Py.Clean." + obj_a.name mesh_r = export_mesh(context, pymesh_r, off_name) add_to_scene(context, mesh_r) return {'FINISHED'}
def fix_mesh(mesh, detail="normal"): bbox_min, bbox_max = mesh.bbox diag_len = norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 1e-2 elif detail == "high": target_len = diag_len * 5e-3 elif detail == "low": target_len = diag_len * 0.03 print("Target resolution: {} mm".format(target_len)) count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices print("#v: {}".format(num_vertices)) count += 1 if count > 10: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh
def main(): args = parse_args() mesh = pymesh.load_mesh(args.input_mesh) if args.initial_block is not None: block = pymesh.load_mesh(args.initial_block) else: bbox_min, bbox_max = mesh.bbox block = pymesh.generate_box_mesh(bbox_min, bbox_max, 2, keep_symmetry=True) block = pymesh.form_mesh(block.vertices, block.faces) block, __ = pymesh.remove_isolated_vertices(block) carved = carve_mesh(mesh, block, args.N, args.batch_size, args.output_mesh, args.initial_N, args.save_intermediate, args.debug) pymesh.save_mesh(args.output_mesh, carved)
def fix_mesh(mesh, detail="normal"): bbox_min, bbox_max = mesh.bbox; diag_len = norm(bbox_max - bbox_min); if detail == "normal": target_len = diag_len * 1e-2; #target_len = diag_len * 5e-3; elif detail == "enormal": target_len = diag_len * 5e-3 elif detail == "high": target_len = diag_len * 3e-3 #target_len = diag_len * 2.5e-3; elif detail == "low": target_len = diag_len * 1e-2; elif detail == "ehigh": target_len = diag_len * 1e-3; print("Target resolution: {} mm".format(target_len)); count = 0; mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100); mesh, __ = pymesh.split_long_edges(mesh, target_len); num_vertices = mesh.num_vertices; while True: #mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6); if detail == "low": mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=False); else: mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True); mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100); if mesh.num_vertices == num_vertices: break; num_vertices = mesh.num_vertices; print("#v: {}".format(num_vertices)); count += 1; if count > 10: break; mesh = pymesh.resolve_self_intersection(mesh); mesh, __ = pymesh.remove_duplicated_faces(mesh); mesh = pymesh.compute_outer_hull(mesh); mesh, __ = pymesh.remove_duplicated_faces(mesh); mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5); mesh, __ = pymesh.remove_isolated_vertices(mesh); return mesh;
def main(): args = parse_args(); mesh = pymesh.load_mesh(args.input_mesh); if args.initial_block is not None: block = pymesh.load_mesh(args.initial_block); else: bbox_min, bbox_max = mesh.bbox; block = pymesh.generate_box_mesh(bbox_min, bbox_max, 2, keep_symmetry=True); block = pymesh.form_mesh(block.vertices, block.faces); block, __ = pymesh.remove_isolated_vertices(block); carved = carve_mesh(mesh, block, args.N, args.batch_size, args.output_mesh, args.initial_N, args.save_intermediate, args.debug); pymesh.save_mesh(args.output_mesh, carved);
def fix_mesh(mesh, target_len): bbox_min, bbox_max = mesh.bbox diag_len = np.linalg.norm(bbox_max - bbox_min) count = 0 print(" remove degenerated triangles") mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) print(" split long edges") mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: print(" pass %d" % count) print(" collapse short edges #1") mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) print(" collapse short edges #2") mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) print(" remove obtuse triangles") mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) print(" %d of %s vertices." % (num_vertices, mesh.num_vertices)) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices count += 1 if count > 10: break print(" resolve self intersection") mesh = pymesh.resolve_self_intersection(mesh) print(" remove duplicated faces") mesh, __ = pymesh.remove_duplicated_faces(mesh) print(" computer outer hull") mesh = pymesh.compute_outer_hull(mesh) print(" remove duplicated faces") mesh, __ = pymesh.remove_duplicated_faces(mesh) print(" remove obtuse triangles") mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) print(" remove isolated vertices") mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh
def range_slider_reconstruction(imagestack): imageStack = imagestack zSpacing = 0.35 / 1.518 for levelThreshold in range(0, 20, 2): vertices, faces, normals, values = measure.marching_cubes_lewiner( imageStack, level=float(levelThreshold), spacing=(zSpacing, 0.05, 0.05), allow_degenerate=False) mesh2 = form_mesh(vertices, faces) # clean mesh mesh3, dictMesh = remove_isolated_vertices(mesh2) # print('Vertices removed : {0}'.format(dictMesh[0])) # meshName = '{0}_{1}_{2}.ply'.format(filename, str(levelThreshold), zSpacing) # save_mesh(meshName, mesh3) return mesh2
def extract_vertices_and_faces(fn): print(f"Processing {fn}") mesh = pymesh.load_mesh(str(fn)) # clean up mesh, _ = pymesh.remove_isolated_vertices(mesh) # get elements vertices = mesh.vertices.copy() faces = mesh.faces.copy() # move to center center = np.mean(vertices, axis=0) vertices -= center # normalize max_len = np.max(np.sum(vertices**2, axis=1)) vertices /= np.sqrt(max_len) return vertices, faces
def __fix_mesh(self, mesh, improvement_thres=0.8): mesh, __ = pymesh.split_long_edges(mesh, self.mesh_target_len) num_vertices = len(mesh.vertices) for __ in range(10): mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges( mesh, self.mesh_target_len, preserve_feature=True ) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if len(mesh.vertices) < num_vertices * improvement_thres: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh
def _getitem_leaf(self, index): if index in self.cache: mesh = self.cache[index] else: path = self.leafs_in_action.iloc[index]['objs_dir'] objs = self.leafs_in_action.iloc[index]['objs'] mesh_list = [] for obj in eval(objs): obj_path = os.path.join(path, obj + '.obj') mesh_tmp = load_pc(obj_path) mesh_tmp, info = pymesh.remove_isolated_vertices(mesh_tmp) mesh_list.append(mesh_tmp) mesh = pymesh.merge_meshes(mesh_list) if len(self.cache) == self.cache_maxsize: pop_key = random.choice(list(self.cache.keys())) self.cache.pop(pop_key) self.cache[index] = mesh if self.return_mode == "vertex": res = get_pc(mesh) else: res = mesh return res
def old_fix_mesh(vertices, faces, detail="normal"): bbox_min = np.amin(vertices, axis=0) bbox_max = np.amax(vertices, axis=0) diag_len = norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 5e-3 elif detail == "high": target_len = diag_len * 2.5e-3 elif detail == "low": target_len = diag_len * 1e-2 print("Target resolution: {} mm".format(target_len)) count = 0 vertices, faces = pymesh.split_long_edges(vertices, faces, target_len) num_vertices = len(vertices) while True: vertices, faces = pymesh.collapse_short_edges(vertices, faces, 1e-6) vertices, faces = pymesh.collapse_short_edges(vertices, faces, target_len, preserve_feature=True) vertices, faces = pymesh.remove_obtuse_triangles( vertices, faces, 150.0, 100) if num_vertices == len(vertices): break num_vertices = len(vertices) print("#v: {}".format(num_vertices)) count += 1 if count > 10: break vertices, faces = pymesh.resolve_self_intersection(vertices, faces) vertices, faces = pymesh.remove_duplicated_faces(vertices, faces) vertices, faces, _ = pymesh.compute_outer_hull(vertices, faces, False) vertices, faces = pymesh.remove_duplicated_faces(vertices, faces) vertices, faces = pymesh.remove_obtuse_triangles(vertices, faces, 179.0, 5) vertices, faces, voxels = pymesh.remove_isolated_vertices(vertices, faces) return vertices, faces
def fix_mesh(mesh, detail="normal"): bbox_min, bbox_max = mesh.bbox; diag_len = norm(bbox_max - bbox_min); if detail == "normal": target_len = diag_len * 5e-3; elif detail == "high": target_len = diag_len * 2.5e-3; elif detail == "low": target_len = diag_len * 1e-2; print("Target resolution: {} mm".format(target_len)); count = 0; mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100); mesh, __ = pymesh.split_long_edges(mesh, target_len); num_vertices = mesh.num_vertices; while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6); mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True); mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100); if mesh.num_vertices == num_vertices: break; num_vertices = mesh.num_vertices; print("#v: {}".format(num_vertices)); count += 1; if count > 10: break; mesh = pymesh.resolve_self_intersection(mesh); mesh, __ = pymesh.remove_duplicated_faces(mesh); mesh = pymesh.compute_outer_hull(mesh); mesh, __ = pymesh.remove_duplicated_faces(mesh); mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5); mesh, __ = pymesh.remove_isolated_vertices(mesh); return mesh;
def main(): args = parse_args(); mesh = pymesh.load_mesh(args.input_mesh); mesh = pymesh.form_mesh(mesh.vertices, mesh.faces); mesh, __ = pymesh.remove_isolated_vertices(mesh); pymesh.save_mesh(args.output_mesh, mesh);
def main(): args = parse_args() mesh = pymesh.load_mesh(args.input_mesh) mesh = pymesh.form_mesh(mesh.vertices, mesh.faces) mesh, __ = pymesh.remove_isolated_vertices(mesh) pymesh.save_mesh(args.output_mesh, mesh)
def fix_meshes(mesh, detail="normal"): """ A pipeline to optimise and fix mesh based on pymesh Mesh object. 1. A box is created around the mesh. 2. A target length is found based on diagonal of the mesh box. 3. You can choose between 3 level of details, normal details settings seems to be a good compromise between final mesh size and sufficient number of vertices. It highly depends on your final goal. 4. Remove degenerated triangles aka collinear triangles composed of 3 aligned points. The number of iterations is 5 and should remove all degenerated triangles 5. Remove isolated vertices, not connected to any faces or edges 6. Remove self intersection edges and faces which is not realistic 7. Remove duplicated faces 8. The removing of duplicated faces can leave some vertices alone, we will removed them 9. The calculation of outer hull volume is useful to be sure that the mesh is still ok 10. Remove obtuse triangles > 179 who is not realistic and increase computation time 11. We will remove potential duplicated faces again 12. And duplicated vertices again 13. Finally we will look if the mesh is broken or not. If yes we will try lower settings, if the lowest settings broke the mesh we will return the initial mesh. If not, we will return the optimised mesh. :param mesh: Pymesh Mesh object to optimise :param detail: string 'high', 'normal' or 'low' ('normal' as default), or float/int Settings to choose the targeting minimum length of edges :return: Pymesh Mesh object An optimised mesh or not depending on detail settings and mesh quality """ meshCopy = mesh # copy/pasta of pymesh script fix_mesh from qnzhou, see pymesh on GitHub bbox_min, bbox_max = mesh.bbox diag_len = np.linalg.norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 5e-3 elif detail == "high": target_len = diag_len * 2.5e-3 elif detail == "low": target_len = diag_len * 1e-2 elif detail is float or detail is int and detail > 0: target_len = diag_len * detail else: print( 'Details settings is invalid, must be "low", "normal", "high" or positive int or float' ) quit() count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 5) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, info = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices count += 1 if count > 10: break mesh, __ = pymesh.remove_duplicated_vertices(mesh) mesh, __ = pymesh.remove_isolated_vertices(mesh) mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_duplicated_vertices(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_isolated_vertices(mesh) if is_mesh_broken(mesh, meshCopy) is True: if detail == "high": print( f'The function fix_meshes broke mesh, trying with lower details settings' ) fix_meshes(meshCopy, detail="normal") return mesh if detail == "normal": print( f'The function fix_meshes broke mesh, trying with lower details settings' ) mesh = fix_meshes(meshCopy, detail="low") return mesh if detail == "low": print( f'The function fix_meshes broke mesh, no lower settings can be applied, no fix was done' ) return meshCopy else: return mesh
def preprocess_mesh(input_mesh, prevent_nonmanifold_edges=True): r"""Removes duplicated vertices, duplicated faces, zero-area faces, and optionally faces the insertion of which would cause an edge of the mesh to become non-manifold. In particular, an iteration is performed over all faces in the mesh, keeping track of the half-edges in each face, and if a face contains a half-edge already found in one of the faces previously processed, it gets removed from the mesh. Args: input_mesh (pymesh.Mesh.Mesh): Mesh to preprocess. prevent_nonmanifold_edges (bool, optional): If True, faces that would cause an edge to become non-manifold are removed from the mesh (cf. above). (default: :obj:`True`) Returns: output_mesh (pymesh.Mesh.Mesh): Mesh after preprocessing. """ halfedges_found = set() new_faces = np.empty([input_mesh.num_faces, 3]) # Remove duplicated vertices. input_mesh = pymesh.remove_duplicated_vertices(input_mesh)[0] # Remove duplicated faces. input_mesh = pymesh.remove_duplicated_faces(input_mesh)[0] num_valid_faces = 0 # Compute face areas so that zero-are faces can be removed. input_mesh.add_attribute("face_area") face_areas = input_mesh.get_face_attribute("face_area") assert (len(face_areas) == len(input_mesh.faces)) for face, face_area in zip(input_mesh.faces, face_areas): # Do not include the face if it does not have three different # vertices. if (face[0] == face[1] or face[0] == face[2] or face[1] == face[2]): continue # Do not include zero-area faces. if (face_area == 0): continue # Optionally prevent non-manifold edges. if (prevent_nonmanifold_edges): new_halfedges_in_face = set() for idx in range(3): halfedge = (face[idx], face[(idx + 1) % 3]) if (halfedge[0] != halfedge[1]): # Exclude self-loops. if (halfedge not in halfedges_found): # Half-edge not found previously. -> The edge is # manifold so far. new_halfedges_in_face.add(halfedge) if (len(new_halfedges_in_face) == 3): # Face does not introduce non-manifold edges. halfedges_found.update(new_halfedges_in_face) new_faces[num_valid_faces] = face num_valid_faces += 1 # Here one can compute the face features already. else: new_faces[num_valid_faces] = face num_valid_faces += 1 new_faces = new_faces[:num_valid_faces] output_mesh = pymesh.form_mesh(input_mesh.vertices, new_faces) # Not including faces might have caused vertices to become isolated. output_mesh = pymesh.remove_isolated_vertices(output_mesh)[0] return output_mesh
for type in os.listdir(root): for phrase in ['train', 'test']: type_path = os.path.join(root, type) phrase_path = os.path.join(type_path, phrase) if not os.path.exists(type_path): os.mkdir(os.path.join(new_root, type)) if not os.path.exists(phrase_path): os.mkdir(phrase) files = glob.glob(os.path.join(phrase_path, '*.off')) for file in files: # load mesh mesh = pymesh.load_mesh(file) # clean up mesh, _ = pymesh.remove_isolated_vertices(mesh) mesh, _ = pymesh.remove_duplicated_vertices(mesh) # get elements vertices = mesh.vertices.copy() faces = mesh.faces.copy() # move to center center = (np.max(vertices, 0) + np.min(vertices, 0)) / 2 vertices -= center # normalize max_len = np.max(vertices[:, 0]**2 + vertices[:, 1]**2 + vertices[:, 2]**2) vertices /= np.sqrt(max_len)