def main(): NCORE = 3 # NJOB = 10 ### number of parallel jobs import pymisca.header as pyhead pyhead.mpl__setBackend('agg') # execfile(pyhead.base__file('headers/header__import.py')) import pymisca.jobs as pyjob import pymisca.callbacks as pycbk import pymisca.util as pyutil pd = pyutil.pd import pymisca.vis_util as pyvis import matplotlib.pyplot as plt figs = pyutil.collections.OrderedDict() import pymisca.ext as pyext pyext.base__check() # pyutil.shellexec('mkdir -p results/') # pyhead.check__base() def loadData(): import sklearn.datasets as skdat data_digit = data = skdat.load_digits() din = data['data'] data_digit.keys() y_true = data_digit['target'] return din tdf = loadData() tdf = pd.DataFrame(tdf) # assert 0 # ##### debugging!!!!!!!!!!!! # tdf = pyutil.readData('http://172.26.114.34:81/static/results/0129__cluster__Brachy-RNA-all/mdl.npy').tolist().data # ##### debugging!!!!!!!!!!!! # lst = [75434668] # betas = np.linspace(0.001,1.52, 25).tolist() + [1.52] * 25 # for i,r in enumerate(lst): # def getBeta(i): # betas = [_betas[i]] * 100 # return betas def worker((i, r)): # betas = [3.0] * 25 # betas = getBeta(i) nIter = 100 alias = 'i-%d_r-%d' % (i, r) mdl0 = pyjob.job__cluster__mixtureVMF__incr( normalizeSample=0, #### set to 1 to normalize the vector lenght tdf=tdf, meanNorm=1, ##### perform X = X-E(X)_ weighted=True, init_method='random', nIter=nIter, # start=0.001, #### specify temperature range # end=2.0, # end=0.7, start=0.2, #### specify temperature range # end=2.0, end=0.7, # betas = betas, #### alternatively, pass a callable for temperature randomState=r, alias='mdl_' + alias, #### filename of cache produced verbose=2, K=60, ) ##### produce diagnostic plot YCUT = entropy_cutoff = 2.5 XCUT = step = 30 axs = pycbk.qc__vmf__speed( mdl0, # XCUT=step,YCUT=entropy_cutoff ### not working yet ) fig = plt.gcf() ax = fig.axes[0] # pyvis.abline(y0=3.7,k=0,ax=ax) pyvis.abline(y0=YCUT, k=0, ax=ax) pyvis.abline(x0=XCUT, k=0, ax=ax) figs['diagnostic-plot'] = plt.gcf() #### using the last model to predict cluster mdls = mdl0.callback.mdls #### models is recorded for each point mdl = mdls[step][-1] #### getting the model at step clu = mdl.predictClu(tdf, entropy_cutoff=entropy_cutoff) clu.to_csv('cluster.csv') ### getting cluster assignment pyvis.heatmap(tdf.reindex(clu.sort_values('clu').index), figsize=[14, 7]) figs['clustered-heatmap'] = plt.gcf() return (alias, fig) res = [worker((0, 1))] # figs.update(res) # N = 5 # _betas = np.linspace(0, 2.0, N) # np.random.seed(0) # lst = np.random.randint(100000000,size=(N)) # it = enumerate(lst) # res = pyutil.mp_map(worker,it,n_cpu=NJOB) # res = res[::60//5] # figs.update(res) pyutil.render__images(figs, )
import pymisca.ext as pyext pyext.base__check() suc, res = pyext.job__script( pyext.base__file('BrachyPhoton/0131__dumpDataRNA__Brachy.py'), # env=env, ) assert suc, res suc, res = pyext.job__script( pyext.base__file('BrachyPhoton/0130__makeTracks-Brachy.py'), # env=env, ) assert suc, res