예제 #1
0
    def to_lti(self):
        """Convert model to |LTIModel|.

        This method interprets the given model as an |LTIModel|
        in the following way::

            - self.operator        -> A
            self.rhs               -> B
            self.outputs           -> C
            None                   -> D
            self.mass              -> E
        """
        if len(self.outputs) == 0:
            raise ValueError('No outputs defined.')
        if len(self.outputs) > 1:
            raise NotImplementedError('Only one output supported.')
        A = -self.operator
        B = self.rhs
        C = next(iter(self.outputs.values()))
        E = self.mass

        if not all(op.linear for op in [A, B, C, E]):
            raise ValueError('Operators not linear.')

        from pymor.models.iosys import LTIModel
        return LTIModel(A, B, C, E=E, visualizer=self.visualizer)
예제 #2
0
def create_cl_fom(Re=110, level=2, palpha=1e-3, control='bc'):
    """Create model which is used to evaluate the H2-Gap norm."""
    setup_str = 'lvl_' + str(level) + ('_' + control if control is not None else '') \
                + '_re_' + str(Re) + ('_palpha_' + str(palpha) if control == 'bc' else '')

    fom = load_fom(Re, level, palpha, control)

    Bra = fom.B.as_range_array()
    Cva = fom.C.as_source_array()

    Z = solve_ricc_lrcf(fom.A, fom.E, Bra, Cva, trans=False)
    K = fom.E.apply(Z).lincomb(Z.dot(Cva).T)

    KC = LowRankOperator(K, np.eye(len(K)), Cva)
    mKB = cat_arrays([-K, Bra]).to_numpy().T
    mKBop = NumpyMatrixOperator(mKB)

    mKBop_proj = LerayProjectedOperator(mKBop,
                                        fom.A.source.G,
                                        fom.A.source.E,
                                        projection_space='range')

    cl_fom = LTIModel(fom.A - KC, mKBop_proj, fom.C, None, fom.E)

    with open(setup_str + '/cl_fom', 'wb') as cl_fom_file:
        pickle.dump({'cl_fom': cl_fom}, cl_fom_file)
예제 #3
0
파일: basic.py 프로젝트: weslowrie/pymor
    def to_lti(self):
        """Convert model to |LTIModel|.

        This method interprets the given model as an |LTIModel|
        in the following way::

            - self.operator        -> A
            self.rhs               -> B
            self.output_functional -> C
            None                   -> D
            self.mass              -> E
        """
        if self.output_functional is None:
            raise ValueError('No output defined.')
        A = -self.operator
        B = self.rhs
        C = self.output_functional
        E = self.mass

        if not all(op.linear for op in [A, B, C, E]):
            raise ValueError('Operators not linear.')

        from pymor.models.iosys import LTIModel
        return LTIModel(A,
                        B,
                        C,
                        E=E,
                        parameter_space=self.parameter_space,
                        visualizer=self.visualizer)
예제 #4
0
 def build_rom(self, projected_operators, error_estimator):
     return LTIModel(error_estimator=error_estimator, **projected_operators)
예제 #5
0
def main(
        n: int = Argument(100, help='Order of the FOM.'),
        r: int = Argument(10, help='Order of the ROMs.'),
):
    """Synthetic parametric demo.

    See the `MOR Wiki page <http://modelreduction.org/index.php/Synthetic_parametric_model>`_.
    """
    # Model
    # set coefficients
    a = -np.linspace(1e1, 1e3, n // 2)
    b = np.linspace(1e1, 1e3, n // 2)
    c = np.ones(n // 2)
    d = np.zeros(n // 2)

    # build 2x2 submatrices
    aa = np.empty(n)
    aa[::2] = a
    aa[1::2] = a
    bb = np.zeros(n)
    bb[::2] = b

    # set up system matrices
    Amu = sps.diags(aa, format='csc')
    A0 = sps.diags([bb, -bb], [1, -1], shape=(n, n), format='csc')
    B = np.zeros((n, 1))
    B[::2, 0] = 2
    C = np.empty((1, n))
    C[0, ::2] = c
    C[0, 1::2] = d

    # form operators
    A0 = NumpyMatrixOperator(A0)
    Amu = NumpyMatrixOperator(Amu)
    B = NumpyMatrixOperator(B)
    C = NumpyMatrixOperator(C)
    A = A0 + Amu * ProjectionParameterFunctional('mu')

    # form a model
    lti = LTIModel(A, B, C)

    mu_list = [1 / 50, 1 / 20, 1 / 10, 1 / 5, 1 / 2, 1]
    w = np.logspace(0.5, 3.5, 200)

    # System poles
    fig, ax = plt.subplots()
    for mu in mu_list:
        poles = lti.poles(mu=mu)
        ax.plot(poles.real, poles.imag, '.', label=fr'$\mu = {mu}$')
    ax.set_title('System poles')
    ax.legend()
    plt.show()

    # Magnitude plot
    fig, ax = plt.subplots()
    for mu in mu_list:
        lti.mag_plot(w, ax=ax, mu=mu, label=fr'$\mu = {mu}$')
    ax.legend()
    plt.show()

    # Hankel singular values
    fig, ax = plt.subplots()
    for mu in mu_list:
        hsv = lti.hsv(mu=mu)
        ax.semilogy(range(1, len(hsv) + 1), hsv, '.-', label=fr'$\mu = {mu}$')
    ax.set_title('Hankel singular values')
    ax.legend()
    plt.show()

    # System norms
    for mu in mu_list:
        print(f'mu = {mu}:')
        print(f'    H_2-norm of the full model:    {lti.h2_norm(mu=mu):e}')
        if config.HAVE_SLYCOT:
            print(
                f'    H_inf-norm of the full model:  {lti.hinf_norm(mu=mu):e}')
        print(f'    Hankel-norm of the full model: {lti.hankel_norm(mu=mu):e}')

    # Model order reduction
    run_mor_method_param(lti, r, w, mu_list, BTReductor, 'BT')
    run_mor_method_param(lti, r, w, mu_list, IRKAReductor, 'IRKA')
C[0, 1::2] = d

# In[ ]:

A0 = NumpyMatrixOperator(A0)
Amu = NumpyMatrixOperator(Amu)
B = NumpyMatrixOperator(B)
C = NumpyMatrixOperator(C)

# In[ ]:

A = A0 + Amu * ProjectionParameterFunctional('mu', ())

# In[ ]:

lti = LTIModel(A, B, C)

# # Magnitude plot

# In[ ]:

mu_list_short = [1 / 50, 1 / 20, 1 / 10, 1 / 5, 1 / 2, 1]

# In[ ]:

w = np.logspace(0.5, 3.5, 200)

fig, ax = plt.subplots()
for mu in mu_list_short:
    lti.mag_plot(w, ax=ax, mu=mu, label=fr'$\mu = {mu}$')
ax.legend()