k = 0.01 # stiffness M = sps.eye(n, format='csc') E = d * sps.eye(n, format='csc') K = sps.diags([n * [2 * k * n ** 2], (n - 1) * [-k * n ** 2], (n - 1) * [-k * n ** 2]], [0, -1, 1], format='csc') B = np.zeros((n, 1)) B[n2 - 1, 0] = n Cp = np.zeros((1, n)) Cp[0, n2 - 1] = 1 # Second-order system so_sys = SecondOrderModel.from_matrices(M, E, K, B, Cp) print(f'order of the model = {so_sys.order}') print(f'number of inputs = {so_sys.input_dim}') print(f'number of outputs = {so_sys.output_dim}') poles = so_sys.poles() fig, ax = plt.subplots() ax.plot(poles.real, poles.imag, '.') ax.set_title('System poles') plt.show() w = np.logspace(-4, 2, 200) fig, ax = plt.subplots() so_sys.mag_plot(w, ax=ax) ax.set_title('Bode plot of the full model')
d = 10 # damping k = 0.01 # stiffness M = sps.eye(n, format='csc') E = d * sps.eye(n, format='csc') K = sps.diags( [n * [2 * k * n**2], (n - 1) * [-k * n**2], (n - 1) * [-k * n**2]], [0, -1, 1], format='csc') B = np.zeros((n, 1)) B[n2 - 1, 0] = n Cp = np.zeros((1, n)) Cp[0, n2 - 1] = 1 # Second-order system so_sys = SecondOrderModel.from_matrices(M, E, K, B, Cp) print(f'order of the model = {so_sys.order}') print(f'number of inputs = {so_sys.input_dim}') print(f'number of outputs = {so_sys.output_dim}') poles = so_sys.poles() fig, ax = plt.subplots() ax.plot(poles.real, poles.imag, '.') ax.set_title('System poles') plt.show() w = np.logspace(-4, 2, 200) fig, ax = plt.subplots() so_sys.mag_plot(w, ax=ax) ax.set_title('Magnitude plot of the full model')
def main( n: int = Argument( 101, help='Order of the full second-order model (odd number).'), r: int = Argument(5, help='Order of the ROMs.'), ): """String equation example.""" set_log_levels({'pymor.algorithms.gram_schmidt.gram_schmidt': 'ERROR'}) # Assemble matrices assert n % 2 == 1, 'The order has to be an odd integer.' n2 = (n + 1) // 2 d = 10 # damping k = 0.01 # stiffness M = sps.eye(n, format='csc') E = d * sps.eye(n, format='csc') K = sps.diags( [n * [2 * k * n**2], (n - 1) * [-k * n**2], (n - 1) * [-k * n**2]], [0, -1, 1], format='csc') B = np.zeros((n, 1)) B[n2 - 1, 0] = n Cp = np.zeros((1, n)) Cp[0, n2 - 1] = 1 # Second-order system so_sys = SecondOrderModel.from_matrices(M, E, K, B, Cp) print(f'order of the model = {so_sys.order}') print(f'number of inputs = {so_sys.dim_input}') print(f'number of outputs = {so_sys.dim_output}') poles = so_sys.poles() fig, ax = plt.subplots() ax.plot(poles.real, poles.imag, '.') ax.set_title('System poles') plt.show() w = np.logspace(-4, 2, 200) fig, ax = plt.subplots() so_sys.mag_plot(w, ax=ax) ax.set_title('Magnitude plot of the full model') plt.show() psv = so_sys.psv() vsv = so_sys.vsv() pvsv = so_sys.pvsv() vpsv = so_sys.vpsv() fig, ax = plt.subplots(2, 2, figsize=(12, 8), sharey=True) ax[0, 0].semilogy(range(1, len(psv) + 1), psv, '.-') ax[0, 0].set_title('Position singular values') ax[0, 1].semilogy(range(1, len(vsv) + 1), vsv, '.-') ax[0, 1].set_title('Velocity singular values') ax[1, 0].semilogy(range(1, len(pvsv) + 1), pvsv, '.-') ax[1, 0].set_title('Position-velocity singular values') ax[1, 1].semilogy(range(1, len(vpsv) + 1), vpsv, '.-') ax[1, 1].set_title('Velocity-position singular values') plt.show() print(f'FOM H_2-norm: {so_sys.h2_norm():e}') if config.HAVE_SLYCOT: print(f'FOM H_inf-norm: {so_sys.hinf_norm():e}') else: print('H_inf-norm calculation is skipped due to missing slycot.') print(f'FOM Hankel-norm: {so_sys.hankel_norm():e}') # Model order reduction run_mor_method(so_sys, w, SOBTpReductor(so_sys), 'SOBTp', r) run_mor_method(so_sys, w, SOBTvReductor(so_sys), 'SOBTv', r) run_mor_method(so_sys, w, SOBTpvReductor(so_sys), 'SOBTpv', r) run_mor_method(so_sys, w, SOBTvpReductor(so_sys), 'SOBTvp', r) run_mor_method(so_sys, w, SOBTfvReductor(so_sys), 'SOBTfv', r) run_mor_method(so_sys, w, SOBTReductor(so_sys), 'SOBT', r) run_mor_method(so_sys, w, SORIRKAReductor(so_sys), 'SOR-IRKA', r, irka_options={'maxit': 10}) run_mor_method(so_sys, w, BTReductor(so_sys.to_lti()), 'BT', r) run_mor_method(so_sys, w, IRKAReductor(so_sys.to_lti()), 'IRKA', r)