class OneSidedIRKAReductor(BasicInterface): """One-Sided Iterative Rational Krylov Algorithm reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. version Version of the one-sided IRKA: - `'V'`: Galerkin projection using the input Krylov subspace, - `'W'`: Galerkin projection using the output Krylov subspace. """ def __init__(self, fom, version): assert isinstance(fom, LTIModel) assert version in ('V', 'W') self.fom = fom self.version = version self.V = None self._pg_reductor = None self.conv_crit = None self.sigmas = None self.R = None self.L = None self.errors = None def reduce(self, r, sigma=None, b=None, c=None, rd0=None, tol=1e-4, maxit=100, num_prev=1, force_sigma_in_rhp=False, projection='orth', conv_crit='sigma', compute_errors=False): r"""Reduce using one-sided IRKA. Parameters ---------- r Order of the reduced order model. sigma Initial interpolation points (closed under conjugation). If `None`, interpolation points are log-spaced between 0.1 and 10. If `sigma` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a one-dimensional array-like of length `r`. `sigma` and `rd0` cannot both be not `None`. b Initial right tangential directions. If `None`, if is chosen as all ones. If `b` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a |VectorArray| of length `r` from `fom.B.source`. `b` and `rd0` cannot both be not `None`. c Initial left tangential directions. If `None`, if is chosen as all ones. If `c` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a |VectorArray| of length `r` from `fom.C.range`. `c` and `rd0` cannot both be not `None`. rd0 Initial reduced order model. If `None`, then `sigma`, `b`, and `c` are used. Otherwise, it needs to be an |LTIModel| of order `r` and it is used to construct `sigma`, `b`, and `c`. tol Tolerance for the largest change in interpolation points. maxit Maximum number of iterations. num_prev Number of previous iterations to compare the current iteration to. A larger number can avoid occasional cyclic behavior. force_sigma_in_rhp If 'False`, new interpolation are reflections of reduced order model's poles. Otherwise, they are always in the right half-plane. projection Projection method: - `'orth'`: projection matrix is orthogonalized with respect to the Euclidean inner product, - `'Eorth'`: projection matrix is orthogonalized with respect to the E product. conv_crit Convergence criterion: - `'sigma'`: relative change in interpolation points, - `'h2'`: relative :math:`\mathcal{H}_2` distance of reduced order models. compute_errors Should the relative :math:`\mathcal{H}_2`-errors of intermediate reduced order models be computed. .. warning:: Computing :math:`\mathcal{H}_2`-errors is expensive. Use this option only if necessary. Returns ------- rom Reduced |LTIModel| model. """ fom = self.fom if not fom.cont_time: raise NotImplementedError assert 0 < r < fom.order assert isinstance(num_prev, int) and num_prev >= 1 assert projection in ('orth', 'Eorth') assert conv_crit in ('sigma', 'h2') # initial interpolation points and tangential directions assert sigma is None or isinstance(sigma, int) or len(sigma) == r assert b is None or isinstance(b, int) or b in fom.B.source and len(b) == r assert c is None or isinstance(c, int) or c in fom.C.range and len(c) == r assert (rd0 is None or isinstance(rd0, LTIModel) and rd0.order == r and rd0.input_space == fom.input_space and rd0.output_space == fom.output_space) assert sigma is None or rd0 is None assert b is None or rd0 is None assert c is None or rd0 is None if rd0 is not None: poles, b, c = _poles_and_tangential_directions(rd0) sigma = np.abs(poles.real) + poles.imag * 1j if force_sigma_in_rhp else -poles else: if sigma is None: sigma = np.logspace(-1, 1, r) elif isinstance(sigma, int): np.random.seed(sigma) sigma = np.abs(np.random.randn(r)) if self.version == 'V': if b is None: b = fom.B.source.ones(r) elif isinstance(b, int): b = fom.B.source.random(r, distribution='normal', seed=b) else: if c is None: c = fom.C.range.ones(r) elif isinstance(c, int): c = fom.C.range.random(r, distribution='normal', seed=c) self.logger.info('Starting one-sided IRKA') self.conv_crit = [] self.sigmas = [np.array(sigma)] if self.version == 'V': self.R = [b] else: self.L = [c] self.errors = [] if compute_errors else None # main loop for it in range(maxit): # interpolatory reduced order model self._projection_matrix(r, sigma, b, c, projection) rom = self._pg_reductor.reduce() # new interpolation points and tangential directions poles, b, c = _poles_and_tangential_directions(rom) sigma = np.abs(poles.real) + poles.imag * 1j if force_sigma_in_rhp else -poles self.sigmas.append(sigma) if self.version == 'V': self.R.append(b) else: self.L.append(c) # compute convergence criterion if conv_crit == 'sigma': dist = _convergence_criterion(self.sigmas[:-num_prev-2:-1], conv_crit) self.conv_crit.append(dist) elif conv_crit == 'h2': if it == 0: rom_list = (num_prev + 1) * [None] rom_list[0] = rom self.conv_crit.append(np.inf) else: rom_list[1:] = rom_list[:-1] rom_list[0] = rom dist = _convergence_criterion(rom_list, conv_crit) self.conv_crit.append(dist) # report convergence self.logger.info(f'Convergence criterion in iteration {it + 1}: {self.conv_crit[-1]:e}') if compute_errors: if np.max(rom.poles().real) < 0: err = fom - rom rel_H2_err = err.h2_norm() / fom.h2_norm() else: rel_H2_err = np.inf self.errors.append(rel_H2_err) self.logger.info(f'Relative H2-error in iteration {it + 1}: {rel_H2_err:e}') # check if convergence criterion is satisfied if self.conv_crit[-1] < tol: break # final reduced order model self._projection_matrix(r, sigma, b, c, projection) rom = self._pg_reductor.reduce() return rom def _projection_matrix(self, r, sigma, b, c, projection): fom = self.fom if self.version == 'V': V = fom.A.source.empty(reserve=r) else: W = fom.A.source.empty(reserve=r) for i in range(r): if sigma[i].imag == 0: sEmA = sigma[i].real * self.fom.E - self.fom.A if self.version == 'V': Bb = fom.B.apply(b.real[i]) V.append(sEmA.apply_inverse(Bb)) else: CTc = fom.C.apply_adjoint(c.real[i]) W.append(sEmA.apply_inverse_adjoint(CTc)) elif sigma[i].imag > 0: sEmA = sigma[i] * self.fom.E - self.fom.A if self.version == 'V': Bb = fom.B.apply(b[i]) v = sEmA.apply_inverse(Bb) V.append(v.real) V.append(v.imag) else: CTc = fom.C.apply_adjoint(c[i].conj()) w = sEmA.apply_inverse_adjoint(CTc) W.append(w.real) W.append(w.imag) if self.version == 'V': self.V = gram_schmidt(V, atol=0, rtol=0, product=None if projection == 'orth' else fom.E) else: self.V = gram_schmidt(W, atol=0, rtol=0, product=None if projection == 'orth' else fom.E) self._pg_reductor = LTIPGReductor(fom, self.V, self.V, projection == 'Eorth') def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class TSIAReductor(BasicInterface): """Two-Sided Iteration Algorithm reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. """ def __init__(self, fom): assert isinstance(fom, LTIModel) self.fom = fom self.V = None self.W = None self._pg_reductor = None self.conv_crit = None self.errors = None def reduce(self, rom0, tol=1e-4, maxit=100, num_prev=1, projection='orth', conv_crit='sigma', compute_errors=False): r"""Reduce using TSIA. See [XZ11]_ (Algorithm 1) and [BKS11]_. In exact arithmetic, TSIA is equivalent to IRKA (under some assumptions on the poles of the reduced model). The main difference in implementation is that TSIA computes the Schur decomposition of the reduced matrices, while IRKA computes the eigenvalue decomposition. Therefore, TSIA might behave better for non-normal reduced matrices. Parameters ---------- rom0 Initial reduced order model. tol Tolerance for the convergence criterion. maxit Maximum number of iterations. num_prev Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of TSIA. projection Projection method: - `'orth'`: projection matrices are orthogonalized with respect to the Euclidean inner product - `'biorth'`: projection matrices are biorthogolized with respect to the E product conv_crit Convergence criterion: - `'sigma'`: relative change in interpolation points - `'h2'`: relative :math:`\mathcal{H}_2` distance of reduced-order models compute_errors Should the relative :math:`\mathcal{H}_2`-errors of intermediate reduced order models be computed. .. warning:: Computing :math:`\mathcal{H}_2`-errors is expensive. Use this option only if necessary. Returns ------- rom Reduced |LTIModel|. """ fom = self.fom assert isinstance(rom0, LTIModel) and rom0.B.source == fom.B.source and rom0.C.range == fom.C.range r = rom0.order assert 0 < r < fom.order assert isinstance(num_prev, int) and num_prev >= 1 assert projection in ('orth', 'biorth') assert conv_crit in ('sigma', 'h2') # begin logging self.logger.info('Starting TSIA') # find initial projection matrices self._projection_matrices(rom0, projection) data = (num_prev + 1) * [None] data[0] = rom0.poles() if conv_crit == 'sigma' else rom0 self.conv_crit = [] self.errors = [] if compute_errors else None # main loop for it in range(maxit): # project the full order model rom = self._pg_reductor.reduce() # compute convergence criterion data[1:] = data[:-1] data[0] = rom.poles() if conv_crit == 'sigma' else rom dist = _convergence_criterion(data, conv_crit) self.conv_crit.append(dist) # report convergence self.logger.info(f'Convergence criterion in iteration {it + 1}: {self.conv_crit[-1]:e}') if compute_errors: if np.max(rom.poles().real) < 0: err = fom - rom rel_H2_err = err.h2_norm() / fom.h2_norm() else: rel_H2_err = np.inf self.errors.append(rel_H2_err) self.logger.info(f'Relative H2-error in iteration {it + 1}: {rel_H2_err:e}') # new projection matrices self._projection_matrices(rom, projection) # check convergence criterion if self.conv_crit[-1] < tol: break # final reduced order model rom = self._pg_reductor.reduce() return rom def _projection_matrices(self, rom, projection): fom = self.fom self.V, self.W = solve_sylv_schur(fom.A, rom.A, E=fom.E, Er=rom.E, B=fom.B, Br=rom.B, C=fom.C, Cr=rom.C) if projection == 'orth': self.V = gram_schmidt(self.V, atol=0, rtol=0) self.W = gram_schmidt(self.W, atol=0, rtol=0) elif projection == 'biorth': self.V, self.W = gram_schmidt_biorth(self.V, self.W, product=fom.E) self._pg_reductor = LTIPGReductor(fom, self.W, self.V, projection == 'biorth') def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class TSIAReductor(BasicInterface): """Two-Sided Iteration Algorithm reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. """ def __init__(self, fom): assert isinstance(fom, LTIModel) self.fom = fom self.V = None self.W = None self._pg_reductor = None self.conv_crit = None self.errors = None def reduce(self, rom0, tol=1e-4, maxit=100, num_prev=1, projection='orth', conv_crit='sigma', compute_errors=False): r"""Reduce using TSIA. See [XZ11]_ (Algorithm 1) and [BKS11]_. In exact arithmetic, TSIA is equivalent to IRKA (under some assumptions on the poles of the reduced model). The main difference in implementation is that TSIA computes the Schur decomposition of the reduced matrices, while IRKA computes the eigenvalue decomposition. Therefore, TSIA might behave better for non-normal reduced matrices. Parameters ---------- rom0 Initial reduced order model. tol Tolerance for the convergence criterion. maxit Maximum number of iterations. num_prev Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of TSIA. projection Projection method: - `'orth'`: projection matrices are orthogonalized with respect to the Euclidean inner product - `'biorth'`: projection matrices are biorthogolized with respect to the E product conv_crit Convergence criterion: - `'sigma'`: relative change in interpolation points - `'h2'`: relative :math:`\mathcal{H}_2` distance of reduced-order models compute_errors Should the relative :math:`\mathcal{H}_2`-errors of intermediate reduced order models be computed. .. warning:: Computing :math:`\mathcal{H}_2`-errors is expensive. Use this option only if necessary. Returns ------- rom Reduced |LTIModel|. """ fom = self.fom assert isinstance( rom0, LTIModel ) and rom0.B.source == fom.B.source and rom0.C.range == fom.C.range r = rom0.order assert 0 < r < fom.order assert isinstance(num_prev, int) and num_prev >= 1 assert projection in ('orth', 'biorth') assert conv_crit in ('sigma', 'h2') # begin logging self.logger.info('Starting TSIA') # find initial projection matrices self._projection_matrices(rom0, projection) data = (num_prev + 1) * [None] data[0] = rom0.poles() if conv_crit == 'sigma' else rom0 self.conv_crit = [] self.errors = [] if compute_errors else None # main loop for it in range(maxit): # project the full order model rom = self._pg_reductor.reduce() # compute convergence criterion data[1:] = data[:-1] data[0] = rom.poles() if conv_crit == 'sigma' else rom dist = _convergence_criterion(data, conv_crit) self.conv_crit.append(dist) # report convergence self.logger.info( f'Convergence criterion in iteration {it + 1}: {self.conv_crit[-1]:e}' ) if compute_errors: if np.max(rom.poles().real) < 0: err = fom - rom rel_H2_err = err.h2_norm() / fom.h2_norm() else: rel_H2_err = np.inf self.errors.append(rel_H2_err) self.logger.info( f'Relative H2-error in iteration {it + 1}: {rel_H2_err:e}') # new projection matrices self._projection_matrices(rom, projection) # check convergence criterion if self.conv_crit[-1] < tol: break # final reduced order model rom = self._pg_reductor.reduce() return rom def _projection_matrices(self, rom, projection): fom = self.fom self.V, self.W = solve_sylv_schur(fom.A, rom.A, E=fom.E, Er=rom.E, B=fom.B, Br=rom.B, C=fom.C, Cr=rom.C) if projection == 'orth': self.V = gram_schmidt(self.V, atol=0, rtol=0) self.W = gram_schmidt(self.W, atol=0, rtol=0) elif projection == 'biorth': self.V, self.W = gram_schmidt_biorth(self.V, self.W, product=fom.E) self._pg_reductor = LTIPGReductor(fom, self.W, self.V, projection == 'biorth') def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class OneSidedIRKAReductor(BasicInterface): """One-Sided Iterative Rational Krylov Algorithm reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. version Version of the one-sided IRKA: - `'V'`: Galerkin projection using the input Krylov subspace, - `'W'`: Galerkin projection using the output Krylov subspace. """ def __init__(self, fom, version): assert isinstance(fom, LTIModel) assert version in ('V', 'W') self.fom = fom self.version = version self.V = None self._pg_reductor = None self.conv_crit = None self.sigmas = None self.R = None self.L = None self.errors = None def reduce(self, r, sigma=None, b=None, c=None, rd0=None, tol=1e-4, maxit=100, num_prev=1, force_sigma_in_rhp=False, projection='orth', conv_crit='sigma', compute_errors=False): r"""Reduce using one-sided IRKA. Parameters ---------- r Order of the reduced order model. sigma Initial interpolation points (closed under conjugation). If `None`, interpolation points are log-spaced between 0.1 and 10. If `sigma` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a one-dimensional array-like of length `r`. `sigma` and `rd0` cannot both be not `None`. b Initial right tangential directions. If `None`, if is chosen as all ones. If `b` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a |VectorArray| of length `r` from `fom.B.source`. `b` and `rd0` cannot both be not `None`. c Initial left tangential directions. If `None`, if is chosen as all ones. If `c` is an `int`, it is used as a seed to generate it randomly. Otherwise, it needs to be a |VectorArray| of length `r` from `fom.C.range`. `c` and `rd0` cannot both be not `None`. rd0 Initial reduced order model. If `None`, then `sigma`, `b`, and `c` are used. Otherwise, it needs to be an |LTIModel| of order `r` and it is used to construct `sigma`, `b`, and `c`. tol Tolerance for the largest change in interpolation points. maxit Maximum number of iterations. num_prev Number of previous iterations to compare the current iteration to. A larger number can avoid occasional cyclic behavior. force_sigma_in_rhp If 'False`, new interpolation are reflections of reduced order model's poles. Otherwise, they are always in the right half-plane. projection Projection method: - `'orth'`: projection matrix is orthogonalized with respect to the Euclidean inner product, - `'Eorth'`: projection matrix is orthogonalized with respect to the E product. conv_crit Convergence criterion: - `'sigma'`: relative change in interpolation points, - `'h2'`: relative :math:`\mathcal{H}_2` distance of reduced order models. compute_errors Should the relative :math:`\mathcal{H}_2`-errors of intermediate reduced order models be computed. .. warning:: Computing :math:`\mathcal{H}_2`-errors is expensive. Use this option only if necessary. Returns ------- rom Reduced |LTIModel| model. """ fom = self.fom if not fom.cont_time: raise NotImplementedError assert 0 < r < fom.order assert isinstance(num_prev, int) and num_prev >= 1 assert projection in ('orth', 'Eorth') assert conv_crit in ('sigma', 'h2') # initial interpolation points and tangential directions assert sigma is None or isinstance(sigma, int) or len(sigma) == r assert b is None or isinstance( b, int) or b in fom.B.source and len(b) == r assert c is None or isinstance(c, int) or c in fom.C.range and len(c) == r assert (rd0 is None or isinstance(rd0, LTIModel) and rd0.order == r and rd0.input_space == fom.input_space and rd0.output_space == fom.output_space) assert sigma is None or rd0 is None assert b is None or rd0 is None assert c is None or rd0 is None if rd0 is not None: poles, b, c = _poles_and_tangential_directions(rd0) sigma = np.abs( poles.real) + poles.imag * 1j if force_sigma_in_rhp else -poles else: if sigma is None: sigma = np.logspace(-1, 1, r) elif isinstance(sigma, int): np.random.seed(sigma) sigma = np.abs(np.random.randn(r)) if self.version == 'V': if b is None: b = fom.B.source.ones(r) elif isinstance(b, int): b = fom.B.source.random(r, distribution='normal', seed=b) else: if c is None: c = fom.C.range.ones(r) elif isinstance(c, int): c = fom.C.range.random(r, distribution='normal', seed=c) self.logger.info('Starting one-sided IRKA') self.conv_crit = [] self.sigmas = [np.array(sigma)] if self.version == 'V': self.R = [b] else: self.L = [c] self.errors = [] if compute_errors else None # main loop for it in range(maxit): # interpolatory reduced order model self._projection_matrix(r, sigma, b, c, projection) rom = self._pg_reductor.reduce() # new interpolation points and tangential directions poles, b, c = _poles_and_tangential_directions(rom) sigma = np.abs( poles.real) + poles.imag * 1j if force_sigma_in_rhp else -poles self.sigmas.append(sigma) if self.version == 'V': self.R.append(b) else: self.L.append(c) # compute convergence criterion if conv_crit == 'sigma': dist = _convergence_criterion(self.sigmas[:-num_prev - 2:-1], conv_crit) self.conv_crit.append(dist) elif conv_crit == 'h2': if it == 0: rom_list = (num_prev + 1) * [None] rom_list[0] = rom self.conv_crit.append(np.inf) else: rom_list[1:] = rom_list[:-1] rom_list[0] = rom dist = _convergence_criterion(rom_list, conv_crit) self.conv_crit.append(dist) # report convergence self.logger.info( f'Convergence criterion in iteration {it + 1}: {self.conv_crit[-1]:e}' ) if compute_errors: if np.max(rom.poles().real) < 0: err = fom - rom rel_H2_err = err.h2_norm() / fom.h2_norm() else: rel_H2_err = np.inf self.errors.append(rel_H2_err) self.logger.info( f'Relative H2-error in iteration {it + 1}: {rel_H2_err:e}') # check if convergence criterion is satisfied if self.conv_crit[-1] < tol: break # final reduced order model self._projection_matrix(r, sigma, b, c, projection) rom = self._pg_reductor.reduce() return rom def _projection_matrix(self, r, sigma, b, c, projection): fom = self.fom if self.version == 'V': V = fom.A.source.empty(reserve=r) else: W = fom.A.source.empty(reserve=r) for i in range(r): if sigma[i].imag == 0: sEmA = sigma[i].real * self.fom.E - self.fom.A if self.version == 'V': Bb = fom.B.apply(b.real[i]) V.append(sEmA.apply_inverse(Bb)) else: CTc = fom.C.apply_adjoint(c.real[i]) W.append(sEmA.apply_inverse_adjoint(CTc)) elif sigma[i].imag > 0: sEmA = sigma[i] * self.fom.E - self.fom.A if self.version == 'V': Bb = fom.B.apply(b[i]) v = sEmA.apply_inverse(Bb) V.append(v.real) V.append(v.imag) else: CTc = fom.C.apply_adjoint(c[i].conj()) w = sEmA.apply_inverse_adjoint(CTc) W.append(w.real) W.append(w.imag) if self.version == 'V': self.V = gram_schmidt( V, atol=0, rtol=0, product=None if projection == 'orth' else fom.E) else: self.V = gram_schmidt( W, atol=0, rtol=0, product=None if projection == 'orth' else fom.E) self._pg_reductor = LTIPGReductor(fom, self.V, self.V, projection == 'Eorth') def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class GenericBTReductor(BasicObject): """Generic Balanced Truncation reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. mu |Parameter|. """ def __init__(self, fom, mu=None): assert isinstance(fom, LTIModel) self.fom = fom self.mu = fom.parse_parameter(mu) self.V = None self.W = None self._pg_reductor = None self._sv_U_V_cache = None def _gramians(self): """Return low-rank Cholesky factors of Gramians.""" raise NotImplementedError def _sv_U_V(self): """Return singular values and vectors.""" if self._sv_U_V_cache is None: cf, of = self._gramians() U, sv, Vh = spla.svd(self.fom.E.apply2(of, cf, mu=self.mu), lapack_driver='gesvd') self._sv_U_V_cache = (sv, U.T, Vh) return self._sv_U_V_cache def error_bounds(self): """Returns error bounds for all possible reduced orders.""" raise NotImplementedError def reduce(self, r=None, tol=None, projection='bfsr'): """Generic Balanced Truncation. Parameters ---------- r Order of the reduced model if `tol` is `None`, maximum order if `tol` is specified. tol Tolerance for the error bound if `r` is `None`. projection Projection method used: - `'sr'`: square root method - `'bfsr'`: balancing-free square root method (default, since it avoids scaling by singular values and orthogonalizes the projection matrices, which might make it more accurate than the square root method) - `'biorth'`: like the balancing-free square root method, except it biorthogonalizes the projection matrices (using :func:`~pymor.algorithms.gram_schmidt.gram_schmidt_biorth`) Returns ------- rom Reduced-order model. """ assert r is not None or tol is not None assert r is None or 0 < r < self.fom.order assert projection in ('sr', 'bfsr', 'biorth') cf, of = self._gramians() sv, sU, sV = self._sv_U_V() # find reduced order if tol is specified if tol is not None: error_bounds = self.error_bounds() r_tol = np.argmax(error_bounds <= tol) + 1 r = r_tol if r is None else min(r, r_tol) if r > min(len(cf), len(of)): raise ValueError( 'r needs to be smaller than the sizes of Gramian factors.') # compute projection matrices self.V = cf.lincomb(sV[:r]) self.W = of.lincomb(sU[:r]) if projection == 'sr': alpha = 1 / np.sqrt(sv[:r]) self.V.scal(alpha) self.W.scal(alpha) elif projection == 'bfsr': gram_schmidt(self.V, atol=0, rtol=0, copy=False) gram_schmidt(self.W, atol=0, rtol=0, copy=False) elif projection == 'biorth': gram_schmidt_biorth(self.V, self.W, product=self.fom.E, copy=False) # find reduced-order model if self.fom.parametric: fom_mu = self.fom.with_(**{ op: getattr(self.fom, op).assemble(mu=self.mu) for op in ['A', 'B', 'C', 'D', 'E'] }, parameter_space=None) else: fom_mu = self.fom self._pg_reductor = LTIPGReductor(fom_mu, self.W, self.V, projection in ('sr', 'biorth')) rom = self._pg_reductor.reduce() return rom def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class GenericBTReductor(BasicInterface): """Generic Balanced Truncation reductor. Parameters ---------- fom The full-order |LTIModel| to reduce. """ def __init__(self, fom): assert isinstance(fom, LTIModel) self.fom = fom self.V = None self.W = None self._pg_reductor = None self._sv_U_V_cache = None def _gramians(self): """Return low-rank Cholesky factors of Gramians.""" raise NotImplementedError def _sv_U_V(self): """Return singular values and vectors.""" if self._sv_U_V_cache is None: cf, of = self._gramians() U, sv, Vh = spla.svd(self.fom.E.apply2(of, cf), lapack_driver='gesvd') self._sv_U_V_cache = (sv, U.T, Vh) return self._sv_U_V_cache def error_bounds(self): """Returns error bounds for all possible reduced orders.""" raise NotImplementedError def reduce(self, r=None, tol=None, projection='bfsr'): """Generic Balanced Truncation. Parameters ---------- r Order of the reduced model if `tol` is `None`, maximum order if `tol` is specified. tol Tolerance for the error bound if `r` is `None`. projection Projection method used: - `'sr'`: square root method - `'bfsr'`: balancing-free square root method (default, since it avoids scaling by singular values and orthogonalizes the projection matrices, which might make it more accurate than the square root method) - `'biorth'`: like the balancing-free square root method, except it biorthogonalizes the projection matrices (using :func:`~pymor.algorithms.gram_schmidt.gram_schmidt_biorth`) Returns ------- rom Reduced-order model. """ assert r is not None or tol is not None assert r is None or 0 < r < self.fom.order assert projection in ('sr', 'bfsr', 'biorth') cf, of = self._gramians() sv, sU, sV = self._sv_U_V() # find reduced order if tol is specified if tol is not None: error_bounds = self.error_bounds() r_tol = np.argmax(error_bounds <= tol) + 1 r = r_tol if r is None else min(r, r_tol) if r > min(len(cf), len(of)): raise ValueError('r needs to be smaller than the sizes of Gramian factors.') # compute projection matrices self.V = cf.lincomb(sV[:r]) self.W = of.lincomb(sU[:r]) if projection == 'sr': alpha = 1 / np.sqrt(sv[:r]) self.V.scal(alpha) self.W.scal(alpha) elif projection == 'bfsr': self.V = gram_schmidt(self.V, atol=0, rtol=0) self.W = gram_schmidt(self.W, atol=0, rtol=0) elif projection == 'biorth': self.V, self.W = gram_schmidt_biorth(self.V, self.W, product=self.fom.E) # find reduced-order model self._pg_reductor = LTIPGReductor(self.fom, self.W, self.V, projection in ('sr', 'biorth')) rom = self._pg_reductor.reduce() return rom def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" return self._pg_reductor.reconstruct(u)
class GenericBTReductor(BasicInterface): """Generic Balanced Truncation reductor. Parameters ---------- fom The system which is to be reduced. """ def __init__(self, fom): assert isinstance(fom, LTIModel) self.fom = fom self.V = None self.W = None self.sv = None self.sU = None self.sV = None def gramians(self): """Return low-rank Cholesky factors of Gramians.""" raise NotImplementedError def sv_U_V(self): """Return singular values and vectors.""" if self.sv is None or self.sU is None or self.sV is None: cf, of = self.gramians() U, sv, Vh = spla.svd(self.fom.E.apply2(of, cf), lapack_driver='gesvd') self.sv = sv self.sU = U.T self.sV = Vh return self.sv, self.sU, self.sV def error_bounds(self): """Returns error bounds for all possible reduced orders.""" raise NotImplementedError def reduce(self, r=None, tol=None, projection='bfsr'): """Generic Balanced Truncation. Parameters ---------- r Order of the reduced model if `tol` is `None`, maximum order if `tol` is specified. tol Tolerance for the error bound if `r` is `None`. projection Projection method used: - `'sr'`: square root method - `'bfsr'`: balancing-free square root method (default, since it avoids scaling by singular values and orthogonalizes the projection matrices, which might make it more accurate than the square root method) - `'biorth'`: like the balancing-free square root method, except it biorthogonalizes the projection matrices (using :func:`~pymor.algorithms.gram_schmidt.gram_schmidt_biorth`) Returns ------- rom Reduced system. """ assert r is not None or tol is not None assert r is None or 0 < r < self.fom.order assert projection in ('sr', 'bfsr', 'biorth') cf, of = self.gramians() sv, sU, sV = self.sv_U_V() # find reduced order if tol is specified if tol is not None: error_bounds = self.error_bounds() r_tol = np.argmax(error_bounds <= tol) + 1 r = r_tol if r is None else min(r, r_tol) if r > min(len(cf), len(of)): raise ValueError('r needs to be smaller than the sizes of Gramian factors.') # compute projection matrices and find the reduced model self.V = cf.lincomb(sV[:r]) self.W = of.lincomb(sU[:r]) if projection == 'sr': alpha = 1 / np.sqrt(sv[:r]) self.V.scal(alpha) self.W.scal(alpha) elif projection == 'bfsr': self.V = gram_schmidt(self.V, atol=0, rtol=0) self.W = gram_schmidt(self.W, atol=0, rtol=0) elif projection == 'biorth': self.V, self.W = gram_schmidt_biorth(self.V, self.W, product=self.fom.E) self.pg_reductor = LTIPGReductor(self.fom, self.W, self.V, projection in ('sr', 'biorth')) rom = self.pg_reductor.reduce() return rom def reconstruct(self, u): """Reconstruct high-dimensional vector from reduced vector `u`.""" self.pg_reductor.reconstruct(u)