def test_store_expr(expr, outputdir): with pytest.warns(DeprecationWarning): store_expr(str(outputdir / "ELEY_1_SUBTRACT_DEPRECATION.expr"), expr) for obj in [*test_numbers, test_dict, *test_lists]: with pytest.warns(DeprecationWarning): with pytest.raises(TypeError): store_expr(obj, expr) for obj in [*test_numbers, test_string, test_dict, *test_lists]: with pytest.warns(DeprecationWarning): with pytest.raises(TypeError): store_expr(test_string, obj)
print("\t -> Executing peak post-procesing and quantification...") # ignore TMS ions and use same mass range for all experiments for peak in peak_list: peak.crop_mass(50,540) peak.null_mass(73) peak.null_mass(147) # find peak areas area = peak_sum_area(im, peak) peak.area = area area_dict = peak_top_ion_areas(im, peak) peak.set_ion_areas(area_dict) # create an experiment expr = Experiment(expr_code, peak_list) # use same retention time range for all experiments lo_rt_limit = "6.5m" hi_rt_limit = "21m" print(f"\t -> Selecting retention time range between '{lo_rt_limit}' and '{hi_rt_limit}'") expr.sele_rt_range([lo_rt_limit, hi_rt_limit]) # store processed data as experiment object output_file = "output/" + expr_code + ".expr" print(f"\t -> Saving the result as '{output_file}'") store_expr(output_file, expr)
def store(self, filename=None): """ Save the Project to a file :param filename: :type filename: :return: :rtype: """ if filename: self.filename.value = filename self.date_modified.value = time_now() if any((self.expr is None, self.tic is None, self.peak_list is None, self.intensity_matrix is None, self.gcms_data is None)): raise ValueError("Must call 'Experiment.run()' before 'store()'") # Write experiment, tic and peak list to temporary directory with tempfile.TemporaryDirectory() as tmp: self.gcms_data.dump(os.path.join(tmp, "gcms_data.dat")) self.intensity_matrix.dump( os.path.join(tmp, "intensity_matrix.dat")) self.tic.write(os.path.join(tmp, "tic.dat"), formatting=False) store_peaks(self.peak_list, os.path.join(tmp, "peaks.dat"), 3) store_expr(os.path.join(tmp, "experiment.expr"), self.expr) with tarfile.open(self.filename.value, mode="w") as experiment_file: # # Add the method files # for method in self._method_files: # experiment_file.add(method) experiment_data = { "name": str(self.name), "user": str(self.user), "device": str(self.device), "date_created": float(self.date_created), "date_modified": float(self.date_modified), "description": str(self.description), "version": "1.0.0", "method": str(self.method), "original_filename": str(self.original_filename), "original_filetype": int(self.original_filetype), "identification_performed": self.identification_performed, "ident_audit_record": None, } if self.identification_performed: experiment_data["ident_audit_record"] = dict( self.ident_audit_record) store_peaks(self.ident_peaks, os.path.join(tmp, "ident_peaks.dat"), 3) experiment_file.add(os.path.join(tmp, "ident_peaks.dat"), arcname="ident_peaks.dat") # Add the info file to the archive info_json = json.dumps(experiment_data, indent=4).encode("utf-8") tarinfo = tarfile.TarInfo('info.json') tarinfo.size = len(info_json) experiment_file.addfile(tarinfo=tarinfo, fileobj=BytesIO(info_json)) # Add the method to the archive experiment_file.add(self.method.value, arcname=filename_only(self.method.value)) # Add the experiment, tic, intrnsity_matrix, gcms_data and peak list experiment_file.add(os.path.join(tmp, "experiment.expr"), arcname="experiment.expr") experiment_file.add(os.path.join(tmp, "tic.dat"), arcname="tic.dat") experiment_file.add(os.path.join(tmp, "peaks.dat"), arcname="peaks.dat") experiment_file.add(os.path.join(tmp, "gcms_data.dat"), arcname="gcms_data.dat") experiment_file.add(os.path.join(tmp, "intensity_matrix.dat"), arcname="intensity_matrix.dat") return self.filename
# do peak detection on pre-trimmed data # get the list of Peak objects pl = BillerBiemann(im, points, scans) # trim by relative intensity apl = rel_threshold(pl, r) # trim by threshold peak_list = num_ions_threshold(apl, n, t) print("Number of Peaks found:", len(peak_list)) # ignore TMS ions and set mass range for peak in peak_list: peak.crop_mass(50,540) peak.null_mass(73) peak.null_mass(147) # find area area = peak_sum_area(im, peak) peak.area = area # create an experiment expr = Experiment("a0806_077", peak_list) # set time range for all experiments expr.sele_rt_range(["6.5m", "21m"]) store_expr("output/a0806_077.expr", expr)
def import_processing(jcamp_file, spectrum_csv_file, report_csv_file, combined_csv_file, bb_points = 9, bb_scans = 2, noise_thresh = 2, target_range = (0,120), tophat_struct="1.5m", nistpath = "../MSSEARCH", base_peak_filter = ['73'], ExprDir = "."): global nist_path nist_path = nistpath # Parameters base_peak_filter = [int(x) for x in base_peak_filter] target_range = tuple(target_range) sample_name = os.path.splitext(os.path.basename(jcamp_file))[0] number_of_peaks = 80 data = JCAMP_reader(jcamp_file) # list of all retention times, in seconds times = data.get_time_list() # get Total Ion Chromatogram tic = data.get_tic() # RT Range, time step, no. scans, min, max, mean and median m/z data.info() #data.write("output/data") # save output # Mass Binning im = build_intensity_matrix_i(data) # covnert to intensity matrix #im.get_size() #number of scans, number of bins masses = im.get_mass_list() # list of mass bins print(" Minimum m/z bin: {}".format(im.get_min_mass())) print(" Maximum m/z bin: {}".format(im.get_max_mass())) # Write Binned Mass Spectra to OpenChrom-like CSV file ms = im.get_ms_at_index(0) # first mass spectrum spectrum_csv = open(spectrum_csv_file, 'w') spectrum_csv.write('RT(milliseconds);RT(minutes) - NOT USED BY IMPORT;RI;') spectrum_csv.write(';'.join(str(mz) for mz in ms.mass_list)) spectrum_csv.write("\n") for scan in range(len(times)): spectrum_csv.write("{};{};{};".format(int(times[scan]*1000),rounders((times[scan]/60),"0.0000000000"),0)) ms = im.get_ms_at_index(scan) spectrum_csv.write(';'.join(str(intensity) for intensity in ms.mass_spec)) spectrum_csv.write('\n') spectrum_csv.close() ## Data filtering # Note that Turbomass does not use smoothing for qualitative method. # Top-hat baseline Correction seems to bring down noise, # retaning shapes, but keeps points on actual peaks #dump_object(im, "output/im.dump") # un-processed output n_scan, n_mz = im.get_size() for ii in range(n_mz): #print("\rWorking on IC#", ii+1, ' ',end='') ic = im.get_ic_at_index(ii) ic_smooth = savitzky_golay(ic) ic_bc = tophat(ic_smooth, struct=tophat_struct) im.set_ic_at_index(ii, ic_bc) #dump_object(im, "output/im-proc.dump") # processed output # Peak Detection based on Biller and Biemann, 1974, with a window # of n points, and combining y scans if they apex next to each other peak_list = BillerBiemann(im, points=bb_points, scans=bb_scans) print(" Number of peaks identified before filtering: {}".format(len(peak_list))) # Filtering peak lists with automatic noise filtering noise_level = window_analyzer(tic) peak_list = num_ions_threshold(peak_list, noise_thresh, noise_level) # why use 2 for number of ions above threshold? print(" Number of peaks identified: {}".format(len(peak_list))) # Peak Areas peak_area_list = [] filtered_peak_list = [] for peak in peak_list: apex_mass_list = peak.get_mass_spectrum().mass_list apex_mass_spec = peak.get_mass_spectrum().mass_spec base_peak_intensity = max(apex_mass_spec) base_peak_index = [index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity][0] base_peak_mass = apex_mass_list[base_peak_index] #print(base_peak_mass) if base_peak_mass in base_peak_filter: continue # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed area = peak_sum_area(im, peak) peak.set_area(area) peak_area_list.append(area) filtered_peak_list.append(peak) # Save the TIC and Peak List tic.write(os.path.join(ExprDir,"{}_tic.dat".format(sample_name)),formatting=False) store_peaks(filtered_peak_list,os.path.join(ExprDir,"{}_peaks.dat".format(sample_name))) # from https://stackoverflow.com/questions/16878715/how-to-find-the-index-of-n-largest-elements-in-a-list-or-np-array-python?lq=1 top_peaks = sorted(range(len(peak_area_list)), key=lambda x: peak_area_list[x]) # Write to turbomass-like CSV file report_csv = open(report_csv_file, "w") # Write to GunShotMatch Combine-like CSV file combine_csv = open(combined_csv_file, "w") combine_csv.write(sample_name) combine_csv.write("\n") report_csv.write("#;RT;Scan;Height;Area\n") combine_csv.write("Retention Time;Peak Area;;Lib;Match;R Match;Name;CAS Number;Scan\n") report_buffer = [] for index in top_peaks: # Peak Number (1-80) peak_number = top_peaks.index(index)+1 # Retention time (minutes, 3dp) RT = rounders(filtered_peak_list[index].get_rt()/60,"0.000") if not target_range[0] < RT <= target_range[1]: continue # skip the peak if it is outside the desired range # scan number, not that we really nead it as the peak object has the spectrum Scan = data.get_index_at_time(filtered_peak_list[index].get_rt())+1 # the binned mass spectrum filtered_peak_list[index].get_mass_spectrum() # TIC intensity, as proxy for Peak height, which should be from baseline Height = '{:,}'.format(rounders(tic.get_intensity_at_index(data.get_index_at_time(filtered_peak_list[index].get_rt())),"0")) # Peak area, originally in "intensity seconds", so dividing by 60 to # get "intensity minutes" like turbomass uses Area = '{:,}'.format(rounders(filtered_peak_list[index].get_area()/60,"0.0")) #report_csv.write("{};{};{};{};{};{}\n".format(peak_number, RT, Scan, Height, Area,bounds)) report_buffer.append([peak_number, RT, Scan, Height, Area]) report_buffer = report_buffer[::-1] # Reverse list order # List of peaks already added to report existing_peaks = [] filtered_report_buffer = [] for row in report_buffer: filtered_report_buffer.append(row) filtered_report_buffer = filtered_report_buffer[:number_of_peaks] filtered_report_buffer.sort(key=operator.itemgetter(2)) for row in filtered_report_buffer: index = filtered_report_buffer.index(row) report_csv.write(";".join([str(i) for i in row])) ms = im.get_ms_at_index(row[2]-1) create_msp("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec) matches_dict = nist_ms_comparison("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec) combine_csv.write("{};{};Page {} of 80;;;;;;{}\n".format(row[1],row[4],index+1,row[2])) for hit in range(1,6): report_csv.write(str(matches_dict["Hit{}".format(hit)])) report_csv.write(";") combine_csv.write(";;{};{};{};{};{};{};\n".format(hit, matches_dict["Hit{}".format(hit)]["Lib"], matches_dict["Hit{}".format(hit)]["MF"], matches_dict["Hit{}".format(hit)]["RMF"], matches_dict["Hit{}".format(hit)]["Name"], matches_dict["Hit{}".format(hit)]["CAS"], )) report_csv.write("\n") time.sleep(2) report_csv.close() combine_csv.close() # Create an experiment expr = Experiment(sample_name, filtered_peak_list) expr.sele_rt_range(["{}m".format(target_range[0]),"{}m".format(target_range[1])]) store_expr(os.path.join(ExprDir,"{}.expr".format(sample_name)), expr) return 0
def quantitative_processing(self, jcamp_file, log_stdout=True): """ Import JCAMP-DX Files :param jcamp_file: :type jcamp_file: :param log_stdout: :type log_stdout: :return: :rtype: """ # Determine the name of the sample from the filename sample_name = os.path.splitext(os.path.basename(jcamp_file))[0] # Log Stdout to File if log_stdout: sys.stdout = open(os.path.join(self.config.log_dir, sample_name + ".log"), "w") # Load data using JCAMP_reader data = JCAMP_reader(jcamp_file) # list of all retention times, in seconds times = data.get_time_list() # get Total Ion Chromatogram tic = data.get_tic() # RT Range, time step, no. scans, min, max, mean and median m/z data.info() # Build "intensity matrix" by binning data with integer bins and a # window of -0.3 to +0.7, the same as NIST uses im = build_intensity_matrix_i(data) # Show the m/z of the maximum and minimum bins print(" Minimum m/z bin: {}".format(im.get_min_mass())) print(" Maximum m/z bin: {}".format(im.get_max_mass())) # Crop masses min_mass, max_mass, *_ = self.config.mass_range if min_mass < im.get_min_mass(): min_mass = im.get_min_mass() if max_mass > im.get_max_mass(): max_mass = im.get_max_mass() im.crop_mass(min_mass, max_mass) # Perform Data filtering n_scan, n_mz = im.get_size() # Iterate over each IC in the intensity matrix for ii in range(n_mz): # print("\rWorking on IC#", ii+1, ' ',end='') ic = im.get_ic_at_index(ii) # Perform Savitzky-Golay smoothing. # Note that Turbomass does not use smoothing for qualitative method. ic_smooth = savitzky_golay(ic) # Perform Tophat baseline correction # Top-hat baseline Correction seems to bring down noise, # retaining shapes, but keeps points on actual peaks ic_bc = tophat(ic_smooth, struct=self.config.tophat_struct) # Set the IC in the intensity matrix to the filtered one im.set_ic_at_index(ii, ic_bc) # Peak Detection based on Biller and Biemann (1974), with a window # of <points>, and combining <scans> if they apex next to each other peak_list = BillerBiemann(im, points=self.config.bb_points, scans=self.config.bb_scans) print(" Number of peaks identified before filtering: {}".format(len(peak_list))) # Filtering peak lists with automatic noise filtering noise_level = window_analyzer(tic) # should we also do rel_threshold() here? # https://pymassspec.readthedocs.io/en/master/pyms/BillerBiemann.html#pyms.BillerBiemann.rel_threshold peak_list = num_ions_threshold(peak_list, self.config.noise_thresh, noise_level) filtered_peak_list = [] for peak in peak_list: # Get mass and intensity lists for the mass spectrum at the apex of the peak apex_mass_list = peak.mass_spectrum.mass_list apex_mass_spec = peak.mass_spectrum.mass_spec # Determine the intensity of the base peak in the mass spectrum base_peak_intensity = max(apex_mass_spec) # Determine the index of the base peak in the mass spectrum base_peak_index = [ index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity][0] # Finally, determine the mass of the base peak base_peak_mass = apex_mass_list[base_peak_index] # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed if base_peak_mass in self.config.base_peak_filter: continue area = peak_sum_area(im, peak) peak.set_area(area) filtered_peak_list.append(peak) print(" Number of peaks identified: {}".format(len(filtered_peak_list))) # Save the TIC and Peak List tic.write(os.path.join(self.config.expr_dir, "{}_tic.dat".format(sample_name)), formatting=False) store_peaks(filtered_peak_list, os.path.join(self.config.expr_dir, "{}_peaks.dat".format(sample_name))) # Create an experiment expr = Experiment(sample_name, filtered_peak_list) expr.sele_rt_range(["{}m".format(self.config.target_range[0]), "{}m".format(self.config.target_range[1])]) store_expr(os.path.join(self.config.expr_dir, "{}.expr".format(sample_name)), expr)