def init_space(): sp = Space() sp.gravity = (0, 50) chain = make_pivot_chain(sp, (0, 0), (240, 30), 30) sp.add(constraint.PivotJoint(chain[0], sp.static_body, chain[0].position)) # Cria quadrado L = 25 player = Body(mass=1, moment=100) shape = Poly(player, [(-L, -L), (L, -L), (L, L), (-L, L)]) player.position = (90, 60) player.velocity = (-25, 25) shape.elasticity = 1.0 shape.color = pyxel.COLOR_RED shape.collision_type = 42 ball = Body(mass=1, moment=200) ball_shape = Circle(ball, 20) ball.position = (player.position.x, 130) ball_shape.elasticity = 1.0 shape.color = pyxel.COLOR_NAVY ball_shape.collision_type = 42 joint1 = constraint.DampedSpring(player, ball, (0, 0), (20, 0), 20, 3, 0.5) joint2 = constraint.PivotJoint(sp.static_body, player, (65, 35)) joint1.collide_bodies = False sp.add(joint1, joint2) body2 = Body(1, 100) sp.add(body2) sp.add(Poly(body2, [(-3, 3), (3, 3), (3, -3), (-3, -3)])) body2.position = 220, 50 sp.add(constraint.DampedRotarySpring(body2, ball, 0, 2, 1)) sp.body2 = body2 # Cria margens line = Body(body_type=Body.STATIC) e = 0 lines = [ Segment(line, (-e, -e), (240 + e, -e), 2), Segment(line, (-e, 180 + e), (240 + e, 180 + e), 2), Segment(line, (-e, -e), (-e, 180 + e), 2), Segment(line, (240 + e, -e), (240 + e, 180 + e), 2), ] for line in lines: line.elasticity = 1.0 lines = [] # Adiciona elementos ao espaço sp.add(player, shape, ball, ball_shape, *lines) sp.player = player #handler = sp.add_collision_handler(42, 42) #handler.begin = lambda *args: False return sp
def generate_pickles(space): for i in range(0, 10): pickle = Body(mass=1, moment=1) pickle_shape = Pickle(pickle, 6) pickle_shape.elasticity = 1 x = random.randrange(260, 800) y = random.randrange(0, 180) pickle.position = (x, y) pickle.velocity_func = zero_gravity v = random.randrange(-200, -70) pickle.velocity = (v, 0) # Set collison type for pickle pickle_shape.collision_type = 2 # Setup the collision callback function Cat and Pickle h = space.add_collision_handler(1, 2) h.begin = dead # Setup the collision callback function Pickle and Pickle p = space.add_collision_handler(2, 2) p.begin = same_elem_collision # Setup the collision callback function Pickle and Pickle under boost pb = space.add_collision_handler(2, 6) pb.begin = same_elem_collision space.add(pickle, pickle_shape)
def __init__(self, space, rect, playfield=None): super(PlungerAssembly, self).__init__() self.chute_counter = 0 self.rect = Rect(0, 0, 1, 1) spring_strength = 100 * plunger_mass chute_opening = playfield.position + rect.center - (rect.width / 2. - ball_radius * 4, 0) plunger_rect = Rect(0, 0, rect.width * .2, ball_radius / 2.) anchor0 = chute_opening - playfield.position - (ball_radius * 3., 0) anchor1 = anchor0 + (rect.width * .8, 0) anchor2 = -plunger_rect.width / 2., 0 plunger_body = Body(plunger_mass, pymunk.inf) plunger_shape = Poly.create_box(plunger_body, plunger_rect.size) plunger_shape.layers = 1 plunger_shape.friction = 0.1 plunger_shape.elasticity = 1.0 plunger_shape.collision_type = plunger_type plunger_body.position = chute_opening + (plunger_rect.width / 2., 0) j0 = GrooveJoint(playfield, plunger_body, anchor0, anchor1, anchor2) j1 = DampedSpring(playfield, plunger_body, anchor0, anchor2, 0, spring_strength, 5) s0 = Circle(Body(), ball_radius / 2.) s0.layers = 1 s0.sensor = True s0.collision_type = sensor0_type s0.body.position = chute_opening + (ball_radius * 4., 0.0) s1 = Circle(Body(), ball_radius * 3.) s1.layers = 1 s1.sensor = True s1.collision_type = sensor1_type s1.body.position = chute_opening def inc_counter(space, arbiter): self.chute_counter += 1 return True def dec_counter(space, arbiter): self.chute_counter -= 1 f = space.add_collision_handler f(sensor1_type, plunger_type, begin=inc_counter, separate=dec_counter) self.playfield = playfield self.plunger_offset = playfield.position - plunger_body.position + ( ball_radius * 3, 0) self.spring = j1 self.spring_length = rect.width / 2. self.spring_strength = spring_strength self.plunger_body = plunger_body self.ball_chute = Rect(0, 0, ball_radius * 2., ball_radius * 2.) self.ball_chute.center = chute_opening self._original_image = pygame.Surface(plunger_rect.size) self._original_image.fill((192, 255, 255)) self.shapes = [plunger_shape, s0, s1, j0, j1] self.visible = 0
def init_space(): sp = Space() # Cria quadrado L = 5 player = Body(mass=1, moment=100) shape = Poly(player, [(-L, -L), (L, -L), (L, L), (-L, L)]) player.position = (50, 40) player.velocity = (-25, 25) shape.elasticity = 1.0 shape.color = pyxel.COLOR_RED # Cria margens line = Body(body_type=Body.STATIC) lines = [ Segment(line, (-30, -30), (270, -30), 2), Segment(line, (-30, 210), (270, 210), 2), Segment(line, (-30, -30), (-30, 210), 2), Segment(line, (270, -30), (270, 210), 2), ] for line in lines: line.elasticity = 1.0 # Adiciona elementos ao espaço sp.add(player, shape, *lines) sp.player = player return sp
def __init__(self, center, road, side): # setup shape mass = 90 radius = 2.5 inertia = moment_for_circle(mass, 0, radius * 2, (0, 0)) body = Body(mass, inertia) body.position = center self.shape = Circle(body, radius * 2, (0, 0)) self.shape.color = (0, 255, 255) self.shape.collision_type = CollisionType.Pedestrian self.shape.elasticity = 0.05 # Walk parameter self.lenRange = road.length self.widthRange = (road.nLanes + 1) * road.width * 2 self.side = side # Bool flags self.dead = False # Move parameters self.moving = 0 self.direction = road.direction self.normal = road.normal self.speed = random.randint(3, 6) # Flags for crossing self.crossing = False self.beginCrossing = False
def __init__(self, world, position, width=1.6, length=4.0, tire_width=.25, tire_length=.8, skidmarks=None, body_density=1.0): mass = width * length * body_density inertia = moment_for_box(mass, width, length) self.world = world body = Body(mass, inertia, ) body.position = position shape = Poly.create_box(body, size=(width, length)) super(Car, self).__init__(world, body, shape) slot_density = .01 slot_radius = .1 slot_mass = slot_density * (slot_radius ** 2) * pi slot_inertia = moment_for_circle(slot_mass, 0.0, slot_radius) #self.slot = Body(slot_mass, slot_inertia) flpos = position[0] - width / 2.0 - tire_width * 2, position[1] + length / 2.0 self.front_left = Tire(self, flpos, tire_width, tire_length, skidmarks=skidmarks, powered=False, density=body_density) frpos = position[0] + width / 2.0 + tire_width * 2, position[1] + length / 2.0 self.front_right = Tire(self, frpos, tire_width, tire_length, skidmarks=skidmarks, powered=False, density=body_density) rlpos = position[0] - width / 2.0 - tire_width * 2, position[1] - length / 2.0 self.rear_left = Tire(self, rlpos, tire_width * 1.5, tire_length, steerable=False, skidmarks=skidmarks, density=body_density) rrpos = position[0] + width / 2.0 + tire_width * 2, position[1] - length / 2.0 self.rear_right = Tire(self, rrpos, tire_width * 1.5, tire_length, steerable=False, skidmarks=skidmarks, density=body_density) self.tires = [self.front_left, self.front_right, self.rear_left, self.rear_right]
def generate_stars(space): for i in range(0, 5): star = Body(mass=0.00000001, moment=1) star_shape = Star(star, 5) x = random.randrange(400, 1600) y = random.randrange(0, 180) star.position = (x, y) star.velocity_func = zero_gravity v = random.randrange(-90, -50) star.velocity = (v, 0) star_shape.collision_type = 3 # Setup the collision callback function Cat and Star g = space.add_collision_handler(1, 3) g.begin = boost # Setup the collision callback function Star and Star s = space.add_collision_handler(3, 3) s.begin = same_elem_collision # Setup the collision callback function Star and Pickle s = space.add_collision_handler(2, 3) s.begin = same_elem_collision # Setup the collision callback function Star and Pickle under boost pb = space.add_collision_handler(3, 6) pb.begin = same_elem_collision space.add(star, star_shape)
def add_rect(self, x, y, w, h, dynamic=True): body = Body(body_type=(Body.STATIC, Body.DYNAMIC)[int(dynamic)]) body.position = x, y poly = Poly.create_box(body, size=(w, h)) poly.density = Environment.DEFAULT_DENSITY self.space.add(body, poly) self.bodies.append(body) return body
def add_polygon(self, x, y, *vertices, dynamic=True): body = Body(body_type=(Body.STATIC, Body.DYNAMIC)[int(dynamic)]) body.position = x, y poly = Poly(body, vertices) poly.density = Environment.DEFAULT_DENSITY self.space.add(body, poly) self.bodies.append(body) return body
def add_circle(self, x, y, r, dynamic=True): body = Body(body_type=(Body.STATIC, Body.DYNAMIC)[int(dynamic)]) body.position = x, y circle = Circle(body, r) circle.density = Environment.DEFAULT_DENSITY self.space.add(body, circle) self.bodies.append(body) return body
def __init__(self, space, rect, playfield=None): super(PlungerAssembly, self).__init__() self.chute_counter = 0 self.rect = pygame.Rect(0, 0, 0, 0) spring_strength = 100 * plunger_mass chute_opening = playfield.position + rect.center - (rect.width / 2 - ball_radius * 4, 0) plunger_rect = pygame.Rect(0, 0, rect.width * .2, ball_radius / 2) anchor0 = chute_opening - playfield.position - (ball_radius * 3, 0) anchor1 = anchor0 + (rect.width * .8, 0) anchor2 = -plunger_rect.width / 2, 0 plunger_body = Body(plunger_mass, pymunk.inf) plunger_shape = Poly.create_box(plunger_body, plunger_rect.size) plunger_shape.layers = 1 plunger_shape.friction = 0 plunger_shape.elasticity = 1.0 plunger_shape.collision_type = plunger_type plunger_body.position = chute_opening + (plunger_rect.width / 2, 0) j0 = GrooveJoint(playfield, plunger_body, anchor0, anchor1, anchor2) j1 = DampedSpring(playfield, plunger_body, anchor0, anchor2, 0, spring_strength, 5) s0 = Circle(Body(), ball_radius / 2) s0.layers = 1 s0.sensor = True s0.collision_type = sensor0_type s0.body.position = chute_opening + (ball_radius * 4, 0) s1 = Circle(Body(), ball_radius * 3) s1.layers = 1 s1.sensor = True s1.collision_type = sensor1_type s1.body.position = chute_opening def inc_counter(space, arbiter): self.chute_counter += 1 return True def dec_counter(space, arbiter): self.chute_counter -= 1 f = space.add_collision_handler f(sensor1_type, plunger_type, begin=inc_counter, separate=dec_counter) self.playfield = playfield self.plunger_offset = playfield.position - plunger_body.position + (ball_radius * 3, 0) self.spring = j1 self.spring_length = rect.width / 2 self.spring_strength = spring_strength self.plunger_body = plunger_body self.ball_chute = pygame.Rect(0, 0, ball_radius * 2, ball_radius * 2) self.ball_chute.center = chute_opening self._original_image = pygame.Surface(plunger_rect.size) self._original_image.fill((192, 255, 255)) self.shapes = [plunger_shape, s0, s1, j0, j1] self.visible = 0
def __init__(self, x, y, side, dir): body = Body(0, 0, Body.STATIC) body.position = x, y self.side = side self.dir = dir self.shape = Circle(body, self.radius * 2, (0, 0)) self.shape.color = (0, 0, 255, 0) self.shape.elasticity = 0.95 self.shape.collision_type = CollisionType.Goalpost
def _create_poly(self): """ Create the polygon used for ray-casting. (Ultrasonic sensor) :return: a Pymunk Poly object. """ body = Body(body_type=Body.STATIC) body.position = Vec2d(self.center_x, self.center_y) return Poly.create_box(body, (self.width, self.height))
def _create_poly(self) -> Circle: """ Create the polygon used for ray-casting. (Ultrasonic sensor) :return: a Pymunk Circle object. """ body = Body(body_type=Body.STATIC) body.position = Vec2d(self.center_x, self.center_y) return Circle(body, self.radius)
def init_space(): sp = Space() sp.gravity = (0, 50) sp.damping = 1.0 floor = Body(body_type=Body.STATIC) stick = Body(mass=100, moment=100 * 50**2) L = 20 shapes = [ Poly(stick, [(-L, -L), (L, -L), (L, L), (0, L + L / 2), (-L, L)], radius=3), Segment(floor, (1, 179), (239, 179), 1), Segment(floor, (1, 1), (239, 1), 1), Segment(floor, (1, 1), (1, 179), 1), Segment(floor, (239, 1), (239, 179), 1), ] stick.position = (120, L) bodies = [] for _ in range(L): r = random.uniform(2, 6) mass = pi * r**2 body = Body(mass=mass, moment=mass * r**2 / 2) circle = Circle(body, r) x = random.uniform(r, 240 - r) y = random.uniform(r, 180 - r) body.position = (x, y) vx = random.uniform(-L, L) vy = random.uniform(-L, L) body.velocity = (vx, vy) bodies.append(body) shapes.append(circle) circle.color = random.randint(1, 15) for shape in shapes: shape.elasticity = 1.0 sp.add(floor, stick, *bodies, *shapes) return sp
def generate_cat(space): cat = Body(mass=1, moment=1) cat_shape = Cat(cat, 15) cat_shape.elasticity = 1 cat.position = (50, 120) cat_shape.collision_type = 1 # Setup the collision callback function Cat and Pickle under boost g = space.add_collision_handler(1, 6) g.begin = same_elem_collision space.add(cat, cat_shape)
def __init__(self, rect): super(Ball, self).__init__() radius = rect.width / 2 body = Body() body.position = rect.center self.shape = Circle(body, radius) self.shape.mass = ball_mass self.shape.elasticity = .25 self.shape.friction = 1 self.rect = Rect(0, 0, rect.width, rect.width) self.original_image = resources.gfx("yarnball.png", convert_alpha=True) self.pymunk_shapes = (body, self.shape)
def __init__(self, center, width, height): # Create body body = Body(0, 0, Body.STATIC) body.position = center points = [Vec2d(width,height),Vec2d(-width,height),-Vec2d(width,height),Vec2d(width,-height)] self.width = width self.height = height self.points = [p+center for p in points] self.shape = Poly(body,points) self.shape.color = (200, 200, 200) self.shape.elasticity = 0.05 self.shape.collision_type = CollisionType.Obstacle
def __init__(self, space, rect): super(Ball, self).__init__() radius = rect.width / 2 body = Body(ball_mass, moment_for_circle(ball_mass, 0, radius)) body.position = rect.center self.shape = Circle(body, radius) self.shape.elasticity = .5 self.shape.friction = 0 self.shape.layers = 1 self.shape.collision_type = ball_type self.rect = pygame.Rect(0, 0, rect.width, rect.width) image = smoothscale(prepare.GFX.get('ball-bearing'), self.rect.size) self._original_image = image.convert_alpha()
def __init__(self, space, rect): super(Handle, self).__init__() color = (192, 192, 220) radius = rect.width / 2 body = Body() body.position = rect.center shape = Circle(body, radius) rect2 = pygame.Rect(0, 0, rect.width, rect.width) image = pygame.Surface(rect2.size, pygame.SRCALPHA) pygame.draw.circle(image, color, rect2.center, int(radius//4)) pygame.draw.line(image, (0, 0, 255), rect2.center, rect2.midtop, 8) self.shapes = [shape] self.rect = rect self._original_image = image
def __init__(self, world, x=0, y=0): self.movable = Movable() self.spriteobject = SpriteObject( world.get_texture("player"), x, y, batch="player" ) self.directionalsprite = DirectionalSprite(world, "player") phys_body = Body(5, inf) phys_body.position = x, y shape = Circle(phys_body, 8, (8, 8)) self.physicsbody = PhysicsBody(shape) world.phys_space.add(self.physicsbody.body, self.physicsbody.shape) self.groundingobject = GroundingObject() self.jumpobject = JumpObject() self.inputobject = InputObject("kb")
def __init__(self, space, rect): super(Handle, self).__init__() color = (192, 192, 220) radius = rect.width / 2 body = Body() body.position = rect.center shape = Circle(body, radius) rect2 = pygame.Rect(0, 0, rect.width, rect.width) image = pygame.Surface(rect2.size, pygame.SRCALPHA) pygame.draw.circle(image, color, rect2.center, int(radius // 4)) pygame.draw.line(image, (0, 0, 255), rect2.center, rect2.midtop, 8) self.shapes = [shape] self.rect = rect self._original_image = image
def create_circle(r=1, x=0, y=0, m=1, bt=Body.DYNAMIC): ''' given radius (r), x-position (x), y-position (y), mass (m), body_type (bt) return the (body, shape) tuple for a circle ''' given_bt = bt bt = Body.DYNAMIC if given_bt == 'dynamic' else Body.DYNAMIC bt = Body.STATIC if given_bt == 'static' else Body.DYNAMIC bt = Body.KINEMATIC if given_bt == 'kinematic' else Body.DYNAMIC moment = moment_for_circle(mass=m, inner_radius=0, outer_radius=r) body = Body(mass=m, moment=moment, body_type=bt) shape = Circle(body=body, radius=r) body.position = (x, y) return body, shape
def __init__(self, world, x=0, y=0): self.movable = Movable() self.spriteobject = SpriteObject(world.get_texture("player"), x, y, batch="player") self.directionalsprite = DirectionalSprite(world, "player") phys_body = Body(5, inf) phys_body.position = x, y shape = Circle(phys_body, 8, (8, 8)) self.physicsbody = PhysicsBody(shape) world.phys_space.add(self.physicsbody.body, self.physicsbody.shape) self.groundingobject = GroundingObject() self.jumpobject = JumpObject() self.inputobject = InputObject("kb")
def init_space(): sp = Space() player = Body(mass=1, moment=1) shape = Circle(player, 10) player.position = (20, 90) player.velocity = (5, 0) shape.color = pyxel.COLOR_YELLOW line = Body(body_type=Body.STATIC) line_shape = Segment(line, (0, 1), (240, 1), 2) line_shape.color = pyxel.COLOR_RED sp.add(player, shape, line, line_shape) sp.player = player return sp
def __init__(self, space, rect, playfield=None): super(Spinner, self).__init__() r, cy = rect.width / 2, rect.height / 2 assert (r == cy) body = Body(.1, moment_for_circle(.1, 0, r)) body.position = rect.center top = Circle(body, r) top.layers = 2 rect2 = pygame.Rect((-r, -cy), rect.size) cross0 = Segment(body, rect2.midleft, rect2.midright, 1) cross1 = Segment(body, rect2.midtop, rect2.midbottom, 1) j0 = PivotJoint(playfield, body, body.position) j1 = SimpleMotor(playfield, body, 0) j1.max_force = 200 self.shapes = [top, cross0, cross1, j0, j1] self.rect = pygame.Rect(rect) self._original_image = prepare.GFX['pachinko-spinner']
def create_rect(w=1, h=1, scalar=1, m=1, x=0, y=0, bt=Body.DYNAMIC): ''' given the width (w), height (h), mass (m), x-position (x), y-position (y), scalar <to augment default square>, and the body_type (bt). returns a `rigid body` which is a shapeless object that has physical properties (mass, position, rotation, velocity, etc) ALSO returns a Poly which is the Shape that really gets drawn ''' poly_size = (w * scalar, h * scalar) poly = Poly.create_box(body=None, size=poly_size) # moment depends on mass and size. # bigger poly >> bigger moment. # more massive >> bigger moment moment_of_inertia = moment_for_poly(m, poly.get_vertices()) body = Body(mass=m, moment=moment_of_inertia, body_type=bt) body.position = (x, y) poly.body = body return body, poly
def create_segment( p1=(0, 0), p2=(0, 1), thicc=1, x=0, y=0, m=1, scalar=1, bt=Body.DYNAMIC): ''' given point_1 (p1), point_2 (p2), thickness (thicc), x-position (x), y-position (y), mass (m), scalar <to augment the length>, body_type (bt) return (body, shape) tuple for a line segment ''' given_bt = bt bt = Body.DYNAMIC if given_bt == 'dynamic' else Body.DYNAMIC bt = Body.STATIC if given_bt == 'static' else Body.DYNAMIC bt = Body.KINEMATIC if given_bt == 'kinematic' else Body.DYNAMIC p2 = (p2[0] * scalar, p2[1] * scalar) moment = moment_for_segment(mass=m, a=p1, b=p2, radius=thicc) body = Body(mass=m, moment=moment, body_type=bt) shape = Segment(body=body, a=p1, b=p2, radius=thicc) body.position = (x, y) return body, shape
def __init__(self,x,y,radius): # setup shape mass = 10 inertia = moment_for_circle(mass, 0, radius*2, (0, 0)) body = Body(mass, inertia) body.position = x, y body.velocity_func = friction_ball self.shape = Circle(body, radius*2, (0, 0)) self.shape.color = (255, 0, 0, 0) self.shape.elasticity = 0.98 self.shape.friction = 3.0 self.shape.collision_type = CollisionType.Ball # Initial and previous positions self.initPos = x,y self.prevPos = Vec2d(x,y) # List of robots who last touched the ball self.lastKicked = []
def __init__(self,center,angle,type,team,goal): # Params based on vehicle type self.width = self.widths[type] self.height = self.lengths[type] mass = self.masses[type] self.points = [Vec2d(self.height,self. width), Vec2d(-self.height, self.width), -Vec2d(self.height, self.width), Vec2d(self.height, -self.width)] inertia = moment_for_poly(mass,self.points) # Basic params self.type = type self.team = team self.goal = goal # Flags self.finished = False self.crashed = False # Direction self.direction = Vec2d(1,0) self.direction.rotate(angle) # Position self.position = LanePosition.OffRoad # For reward self.prevPos = center # Create body body = Body(mass, inertia, Body.DYNAMIC) body.position = center body.angle = angle body.velocity_func = friction_car self.shape = Poly(body, self.points) self.shape.color = (0, 255, 0) self.shape.elasticity = 0.05 self.shape.collision_type = CollisionType.Car
def __init__(self, car, position, width=10.0, length=20.0, steerable=True, skidmarks=None, powered=True, density=1.0): world = car.world self.steerable = steerable self.powered = powered self.skidding = False mass = width * length * density inertia = moment_for_box(mass, width, length) self.world = world body = Body(mass, inertia, ) body.position = position shape= Poly.create_box(body, size=(width, length)) super(Tire, self).__init__(world, body, shape) ## self.bodyDef = box2d.b2BodyDef() ## self.bodyDef.position = position ## body = world.CreateBody(self.bodyDef) ## super(Tire, self).__init__(world, body) ## self.shapeDef = box2d.b2PolygonDef() ## self.shapeDef.density = 1 ## self.shapeDef.SetAsBox(width, length) ## self.shap = self.body.CreateShape(self.shapeDef) ## self.body.SetMassFromShapes() # our joint joint = PivotJoint(self.body, car.body, self.position) joint.error_bias = pow(1.0 - 0.1, 60.0) * 10 self.world.add(joint) #joint = PinJoint(self.body, car.body) #self.world.add(joint) self.rot_joint = RotaryLimitJoint(self.body, car.body, 0, 0) self.world.add(self.rot_joint)
def create_triangle(p1=(0, 0), p2=(1, 0), p3=(.5, .866), x=0, y=0, m=1, scalar=1, bt=Body.DYNAMIC): ''' given points (p1..p3), mass (m), x-position (x), y-position (y), scalar <to augment default equilateral triangle>, body_type (bt), The default values for p1,p2,p3 make an approx. equilateral triangle. return (body, shape) tuple for a triangle ''' vertices = (p1, p2, p3) # equilateral vertices = tuple((v[0] * scalar, v[1] * scalar) for v in vertices) shape = Poly(body=None, vertices=vertices) # will set body later vertices = shape.get_vertices() # because Vec2d of vertices is needed moment = moment_for_poly(mass=m, vertices=vertices) body = Body(mass=m, moment=moment) body.position = (x, y) shape.body = body # set body here because init None above return body, shape
def create_pentagon(p1=(0, 0), p2=(2, 0), p3=(3, 2), p4=(1, 4), p5=(-1, 2), x=0, y=0, m=1, scalar=1, bt=Body.DYNAMIC): ''' given points (p1..p5), mass (m), x-position (x), y-position (y), scalar <to augment default points>, body_type (bt), return (body, shape) tuple for a pentagon ''' vertices = (p1, p2, p3, p4, p5) vertices = tuple((v[0] * scalar, v[1] * scalar) for v in vertices) shape = Poly(body=None, vertices=vertices) # will set body later vertices = shape.get_vertices() # because Vec2d of vertices is needed moment = moment_for_poly(mass=m, vertices=vertices) body = Body(mass=m, moment=moment) body.position = (x, y) shape.body = body # set body here because init None above return body, shape
def init_space(): sp = Space() h = 20 * sqrt(2) player = Body(mass=1, moment=400) shape = Poly(player, [(-20, -h / 3), (20, -h / 3), (0, 2 / 3 * h)]) player.position = (90, 90) shape.elasticity = 1.0 shape.color = pyxel.COLOR_YELLOW line = Body(body_type=Body.STATIC) lines = [ Segment(line, (0, 1), (240, 1), 2), Segment(line, (0, 179), (240, 179), 2), Segment(line, (1, 0), (1, 180), 2), Segment(line, (239, 0), (239, 180), 2), ] for line in lines: line.elasticity = 1.0 line.color = pyxel.COLOR_PEACH sp.add(player, shape, *lines) sp.player = player return sp
def make_pivot_chain(space, a, b, n, mass=1): a, b = map(Vec2d, (a, b)) delta = (b - a) / n L = delta.length pos = a objs = [] prev_body = None for _ in range(n): final = pos + delta body = Body(mass=mass / n, moment=(mass / n) * L**2 / 2) shape = Segment(body, -delta / 2, delta / 2, 2) body.position = pos + delta / 2 objs.append(body) if prev_body is not None: joint = constraint.PivotJoint(body, prev_body, pos) joint.collide_bodies = False space.add(joint) space.add(body, shape) pos = final prev_body = body return objs
def load(self): self.world_size = Size(3000, 3000) self.camera = Camera(self.size, self.world_size, 1000, 10) self._tool = None self.tool = None self.batch = graphics.Batch() self.background = CameraGroup(graphics.OrderedGroup(0), self.camera) self.foreground = CameraGroup(graphics.OrderedGroup(1), self.camera) self.playerg = CameraGroup(graphics.OrderedGroup(2), self.camera) self.world_ui = CameraGroup(graphics.OrderedGroup(3), self.camera) self.ui = graphics.OrderedGroup(2) self.space = Space() self.space.gravity = (0.0, 0.0) buffer = 100 borders = Body() borders.position = (0, 0) left = Segment(borders, (-buffer, -buffer), (-buffer, self.world_size.height+buffer), buffer) bottom = Segment(borders, (-buffer, -buffer), (self.world_size.width+buffer, -buffer), buffer) right = Segment(borders, (self.world_size.width+buffer, self.world_size.height+buffer), (self.world_size.width+buffer, -buffer), buffer) top = Segment(borders, (self.world_size.width+buffer, self.world_size.height+buffer), (-buffer, self.world_size.height+buffer), buffer) self.space.add_static(left, bottom, right, top) self.stars = Stars(self.world_size, self.batch, self.background) self.asteroids = Asteroid.populate(50, 100, self.world_size, self.batch, self.foreground, self.space) if not self.asteroids: print("None of a particular resource on this asteroid belt, that'd be unfair. Trying again.") self.end(Main()) return self.home_world = choice([asteroid for asteroid in self.asteroids if asteroid.position.y > self.world_size.height/4*3]) self.home_world.type = "home" self.home_world.populated = True x, y = self.home_world.position self.camera.move(Vector(x-self.size.width/2, y-self.size.height/2)) # Let's make stuff a bit more interesting. for asteroid in self.asteroids: if not asteroid.type == "home": asteroid.body.apply_impulse((triangular(-20000, 20000, 0), triangular(-20000, 20000, 0))) x, y = self.home_world.position self.player = Person(x+150, y+150, self.batch, self.playerg, self.space) self.mouse = x+150, y+150 centre = Vector(self.size.width/2, self.size.height/2) image = centre_image(resource.image("logo.png")) self.logo = sprite.Sprite(image, centre.x, centre.y, batch=self.batch, group=self.ui) self.logo.opacity = 255 self.fade = True self.faded = False planet = centre_image(resource.image("planet.png")) x = self.world_size.width/2 y = planet.height/2 self.planet_sprite = sprite.Sprite(planet, x, y, batch=self.batch, group=self.world_ui) self.win_box = BB(x-200, y-200, x+200, y+200) #self.tools = sorted([tool(self.space) for tool in Tool.__subclasses__()], key=attrgetter("order"), reverse=True) #self.buttons = {tool: Button(30, 30+number*50, tool.image, tool.description, self.use_tool(tool), self.ui, self.batch) for number, tool in enumerate(self.tools)} self.constraints = set()