예제 #1
0
def get_trial_outcomes(dfns):
    trialdata = {}                                                  # initiate output dict
    for dfn in dfns:
        df = None
        df = pymworks.open(dfn)                                     # open the datafile
        devs = df.get_events('#stimDisplayUpdate')                  # get all display update events
        # stims = pymworks.events.display.to_stims(devs)
        resptypes = ['session_correct_lick','session_correct_ignore',\
                    'session_bad_lick','session_bad_ignore'] #,\
                    # 'aborted_counter']                              # list of response variables to track...
        outevs = df.get_events(resptypes)                           # get all events with these vars
        responses = []
        for r in resptypes:                                         # get list of incrementing variables
            revs = df.get_events(r)
            incr_resp = session_incremented(revs)
            responses.append(incr_resp)
        responses = list(itertools.chain.from_iterable(responses))
        real_responses = [r for r in responses if r.value != 0]

        trials = pymworks.events.display.to_trials(devs, responses,\
                    remove_unknown=True)                            # get rid of orphan events

        #synctrials = syncdicts(stims,real_responses,direction=-1)
        #trash = [t for t in synctrials if t is None]
        #trials = [t for t in synctrials if t not in trash]

        trialdata[dfn] = trials

    return trialdata
def process_datafiles(dfns, stats):
    data = {}
    for dfn in dfns:
        logging.debug("Datafile: %s" % dfn)
        df = None
        df = pymworks.open(dfn)
        r = {}
        for s in stats:
            r[s] = stats[s][0](df)
            logging.debug("\t%s: %s" % (s, r[s]))
        df.close()
        data[dfn] = r
    return data
예제 #3
0
def process_datafiles(dfns, stats):
    data = {}
    try:
        for dfn in dfns:
            logging.debug("Datafile: %s" % dfn)
            df = None
            df = pymworks.open(dfn)
            r = {}
            for s in stats:
                r[s] = stats[s][0](df)
                logging.debug("\t%s: %s" % (s, r[s]))
            df.close()
            data[dfn] = r
        return data
    except KeyError:
        print "NO KEY FOUND: %s", dfn
def process_datafiles(dfns, stats):
    data = {}
    for dfn in dfns:
        logging.debug("Datafile: %s" % dfn)
        df = None
        df = pymworks.open(dfn)
        r = {}
        for s in stats:
            try:
                r[s] = stats[s][0](df)
                logging.debug("\t%s: %s" % (s, r[s]))
            except TypeError:
                print "stat: ", s, "file: ", dfn
        df.close()
        data[dfn] = r

    return data
def process_outcomes(dfns, stats):
    data = {}
    for dfn in dfns:
        df = None
        df = pymworks.open(fn)

        r = {}
        evs = df.get_events('#stimDisplayUpdate')
        outcomes = df.get_events(('session_correct_lick', 'session_correct_ignore',\
                'session_bad_lick', 'session_bad_ignore'))
        ts = pymworks.events.display.to_trials(evs, outcomes)
        gts = datautils.grouping.groupn(ts, ('name', 'outcome'))
        nOutcomes = datautils.grouping.ops.stat(gts, len)

        respkeys = [k for k in nOutcomes.keys()]
        corrlicks = []
        badignores = []
        corrignores = []
        badlicks = []
        for k in respkeys:
            resptypes = nOutcomes[k].keys()
            for t in resptypes:
                if 'correct_lick' in t:
                    corrlicks.append(nOutcomes[k][t])
                if 'bad_ignore' in t:
                    badignores.append(nOutcomes[k][t])
                if 'correct_ignore' in t:
                    corrignores.append(nOutcomes[k][t])
                if 'bad_lick' in t:
                    badlicks.append(nOutcomes[k][t])
        correct_licks = sum(corrlicks)
        bad_ignores = sum(badignores)
        correct_ignores = sum(corrignores)
        bad_licks = sum(badlicks)



        df.close()

        data[dfn] = r

    return data
예제 #6
0
def parse_trials(dfns, remove_orphans=True):
    trialdata = {}                                                              # initiate output dict
    
    for dfn in dfns:
        df = None
        df = pymworks.open(dfn)                                                 # open the datafile

        sname = os.path.split(dfn)[1]
        trialdata[sname] = []

        modes = df.get_events('#state_system_mode')
        run_idxs = np.where(np.diff([i['time'] for i in modes])<20)
        bounds = []
        for r in run_idxs[0]:
            stop_ev = next(i for i in modes[r:] if i['value']==0)
            bounds.append([modes[r]['time'], stop_ev['time']])

        print "................................................................"
        # print "----------------------------------------------------------------"
        print "Parsing file\n%s... " % dfn
        print "Found %i start events in session." % len(bounds)
        print "................................................................"


        for bidx,boundary in enumerate(bounds):
            print "----------------------------------------------------------------"
            print "SECTION %i" % bidx
            print "----------------------------------------------------------------"
            tmp_devs = df.get_events('#stimDisplayUpdate')                          # get *all* display update events
            tmp_devs = [i for i in tmp_devs if i['time']<= boundary[1] and i['time']>=boundary[0]]


            dimmed = df.get_events('flag_dim_target')
            dimmed = np.mean([i.value for i in dimmed])                             # set dim flag to separate trials based on initial stim presentation

            resptypes = ['session_correct_lick','session_correct_ignore','session_bad_lick','session_bad_ignore'] #,\ # 'aborted_counter']                                        # list of response variables to track...
            
            outevs = df.get_events(resptypes)                                       # get all events with these vars
            outevs = [i for i in outevs if i['time']<= boundary[1] and i['time']>=boundary[0]]
            # responses = []
            # for r in resptypes:                                                     # get list of incrementing variables
                # revs = df.get_events(r)
                # incr_resp = [r for r in revs if r['time']>=boundary[0] and r['time']<=boundary[1]]
                # incr_resp = session_incremented(revs)
                # responses.append(incr_resp)
            # responses = list(itertools.chain.from_iterable(responses))
            # real_responses = [r for r in responses if r.value != 0]                 # remove initial 0 value set at session start
            # R = sorted(real_responses, key=lambda e: e.time)                        # sort by time
            R = sorted([r for r in outevs if r.value > 0], key=lambda e: e.time)


            T = pymworks.events.display.to_trials(tmp_devs, R, remove_unknown=False)# match stim events to response events
            if dimmed:                                                              # don't double count stimulus for "faded" target stimuli
                trials = [i for i in T if i['alpha_multiplier']==1.0]
            else:
                trials = T

            print "N total response events: ", len(trials)
            if remove_orphans:                                                      # this should always be true, generally...
                orphans = [(i,x) for i,x in enumerate(trials) if x['outcome']=='unknown']
                trials = [t for t in trials if not t['outcome']=='unknown']          # get rid of display events without known outcome within 'duration_multiplier' time
                print "Found and removed %i orphan stimulus events in file %s" % (len(orphans), dfn)
                print "N valid trials: %i" % len(trials)

            trialdata[sname].append(trials)

    return trialdata
                # print 'Distractor count off by %d, in %s' % (tmp_nDistractors-(tmp_correct_ignores+tmp_bad_licks), fn)
                difference = tmp_nDistractors-(tmp_correct_ignores+tmp_bad_licks)
                distractor_count_check.append([fn, difference])
            if ((tmp_correct_licks+tmp_bad_ignores) == tmp_nTargets) \
                    and ((tmp_correct_ignores+tmp_bad_licks) == tmp_nDistractors):
                good_counts.append([fn])

            if target_count_check != [] or distractor_count_check != []:
                print "Targets: ", target_count_check
                print "Distractors: ", distractor_count_check
            else: 
                print "Session trial counts good."


            # get stimulus display update events, and parse them into trials:
            df = pymworks.open(fn)
            evs = df.get_events('#stimDisplayUpdate')
            outcome_events = df.get_events(('correct_lick', 'bad_lick', 'correct_ignore', 'bad_ignore'))

            stims = pymworks.events.display.to_stims(evs)
            trials = pymworks.events.display.to_trials(evs, outcome_events)

            if len(stims) != len(trials):
                print "Stims vs Trials: %s, %d" % (fn, len(stims)-len(trials))
            elif len(stims) == 0 or len(trials) == 0:
                print len(stims), len(trials), fn
            else:
                print "Events by stim and trial are matched."


            # get targetprob events within the time-range of trials:
def get_object_rot(datadir):

    '''
    Object rotations are made by rotating blob in POVray. 
    All stimulus-rotation values will be 0. 
    Get true rotation relative to default using image path name.
    '''

    processed_dir = os.path.join(os.path.split(datadir)[0], 'processed')
    animals = os.listdir(processed_dir)
    animals = [i for i in animals if i.endswith('.pkl')]
    animals = [os.path.splitext(a)[0] for a in animals]

    for animal in animals:

        fn = os.path.join(processed_dir, animal+'.pkl')
        with open(fn, 'rb') as f:
            curr_trials = pkl.load(f)

        session_dates = []
        for t in curr_trials.keys():
            subject, date, epoch = parse_filename(t)
            session_dates.append(date)

        for t in curr_trials.keys():
            print t
            if len(curr_trials[t])==0:
                continue
            else:
                if len(curr_trials[t])==1:
                    ctrials = curr_trials[t][0]
                else:
                    ctrials = curr_trials[t]

            df = pymworks.open(os.path.join(datadir, subject, t))

            # if no morphs, move on...
            # mtrials = [i for i in ctrials if 'morph' in i['name']]
            # if len(mtrials)>0:
            #     continue

            # Get TRUE SIZES AND ROTATIONS:
            AspRat_name = 'StimAspectRatio'
            AspRat = df.get_events(AspRat_name)[-1].value
            sizs = [round(i['size_x']/AspRat) for i in ctrials]
            print set(sizs)

            stims = [i['name'] for i in ctrials]
            rots = []
            for s in stims:
                if 'Blob' in s:
                    rots.append(s.rsplit('y', 1)[1].rsplit('.',1)[0])
                else:
                    rots.append(0)

            for sz,rot,ctrial in zip(sizs, rots, ctrials):
                try:
                    ctrial['actual_rotation'] = rot
                    ctrial['actual_size'] = str(sz)
                except KeyError:
                    print ctrial

            curr_trials[t] = ctrials

        
        save_dict(curr_trials, os.path.split(fn)[0], os.path.split(fn)[1])       
        print "Saved to %s" % fn
# devs = [e for e in evs if e.value]
# im_names = [i['name'] for d in devs for i in d.value if '.png' in i['name']]
# morphs = [i for i in im_names if 'morph' in i]
# print len(morphs)
# from collections import Counter
# from pandas import Series

# fn = [i for i in fns if '_SD' in i] #[0]
# print fn
# # f = fn

for f in fns:
    # f = fn[4]
    print f
    df = pymworks.open(os.path.join(file_dir, f))

    # Check stimDisplayUpdate events vs announceStimulus:
    stim_evs = df.get_events('#stimDisplayUpdate')
    devs = [e for e in stim_evs if not e.value==[None]]
    idevs = [i for i in devs for v in i.value if 'png' in v['name']]

    ann_evs = df.get_events('#announceStimulus')
    aevs = [e for e in ann_evs if type(e.value) is dict]
    sevs = [i for i in aevs if 'png' in i.value['name']]

    if not len(idevs)==len(sevs):
        print "MISMATCH in event counts in DF: %s" % f
        print "-------------------------"
        print "#stimDisplayUpdate %i and #announceStimulus %i." % (len(idevs), len(sevs))
def parse_trials(dfns, remove_orphans=True):
    """
    Parse session .mwk files.
    Key is session name values are lists of dicts for each trial in session.
    Looks for all response and display events that occur within session.

    dfns : list of strings
        contains paths to each .mwk file to be parsed
    
    remove_orphans : boolean
        for each response event, best matching display update event
        set this to 'True' to remove display events with unknown outcome events
    """

    trialdata = {}                                                              # initiate output dict
    
    for dfn in dfns:
        df = None
        df = pymworks.open(dfn)                                                 # open the datafile

        sname = os.path.split(dfn)[1]
        trialdata[sname] = []

        modes = df.get_events('#state_system_mode')                             # find timestamps for run-time start and end (2=run)
        run_idxs = np.where(np.diff([i['time'] for i in modes])<20)             # 20 is kind of arbitray, but mode is updated twice for "run"
        bounds = []
        for r in run_idxs[0]:
            try:
                stop_ev = next(i for i in modes[r:] if i['value']==0 or i['value']==1)
            except StopIteration:
                end_event_name = 'trial_end'
                print "NO STOP DETECTED IN STATE MODES. Using alternative timestamp: %s." % end_event_name
                stop_ev = df.get_events(end_event_name)[-1]
                print stop_ev
            bounds.append([modes[r]['time'], stop_ev['time']])

        # print "................................................................"
        print "****************************************************************"
        print "Parsing file\n%s... " % dfn
        print "Found %i start events in session." % len(bounds)
        print "****************************************************************"


        for bidx,boundary in enumerate(bounds):
            # print "................................................................"
            print "SECTION %i" % bidx
            print "................................................................"
            tmp_devs = df.get_events('#stimDisplayUpdate')                      # get *all* display update events
            tmp_devs = [i for i in tmp_devs if i['time']<= boundary[1] and\
                        i['time']>=boundary[0]]                                 # only grab events within run-time bounds (see above)

            dimmed = df.get_events('flag_dim_target')
            dimmed = np.mean([i.value for i in dimmed])                         # set dim flag to separate trials based on initial stim presentation

            resptypes = ['session_correct_lick','session_correct_ignore',\
                            'session_bad_lick','session_bad_ignore']
                             #,\ # 'aborted_counter']                           # list of response variables to track...
            
            outevs = df.get_events(resptypes)                                   # get all events with these vars
            outevs = [i for i in outevs if i['time']<= boundary[1] and\
                        i['time']>=boundary[0]]
            R = sorted([r for r in outevs if r.value > 0], key=lambda e: e.time)

            T = pymworks.events.display.to_trials(tmp_devs, R,\
                        remove_unknown=False)                                   # match stim events to response events

            if dimmed:                                                          # don't double count stimulus for "faded" target stimuli
                trials = [i for i in T if i['alpha_multiplier']==1.0]
            else:
                trials = T

            print "N total response events: ", len(trials)
            if remove_orphans:                                                  # this should always be true, generally...
                orphans = [(i,x) for i,x in enumerate(trials) if\
                            x['outcome']=='unknown']
                trials = [t for t in trials if not t['outcome']=='unknown']     # get rid of display events without known outcome within 'duration_multiplier' time
                print "Found and removed %i orphan stimulus events in file %s"\
                            % (len(orphans), dfn)
                print "N valid trials: %i" % len(trials)

            trialdata[sname].append(trials)

    return trialdata
예제 #11
0
def get_morph_stats(datadir, baseline, show_curve=True):
    if baseline is True:
        processed_dir = os.path.join(os.path.split(datadir)[0], 'processed_premorphs')
    else:
        processed_dir = os.path.join(os.path.split(datadir)[0], 'processed')
    animals = os.listdir(processed_dir)
    animals = [i for i in animals if i.endswith('_trials.pkl')]
    animals = [os.path.splitext(a)[0] for a in animals]

    P = dict()
    for animal in animals:

        P[animal] = dict()

        fn = os.path.join(processed_dir, animal+'.pkl')
        with open(fn, 'rb') as f:
            curr_trials = pkl.load(f)

        session_dates = []
        for t in curr_trials.keys():
            print t
            subject, date, epoch = parse_filename(t)
            session_dates.append(date)

        true_middle_idx = False # Bad indexing, incorrect assignment of halway point bw morphs in MW

        M = dict()
        for t in sorted(curr_trials.keys(), key=natural_keys):
            print t
            if len(curr_trials[t])==0:
                continue
            elif len(curr_trials[t])==1 or len(curr_trials[t])==2:
                ctrials = []
                check_idx = 0
                while ctrials==[]:
                    ctrials = curr_trials[t][check_idx]
                    check_idx += 1
            else:
                print "LEN: ", len(curr_trials[t])
                ctrials = curr_trials[t]

            df = pymworks.open(os.path.join(datadir, subject, t))

            # if no morphs, move on...
            mtrials = [i for i in ctrials if 'morph' in i['name']]
            if len(mtrials)==0:
                continue

            # Assign appropriate 1/2-way point to calculate percent RIGHT choice (or LEFT):
            # BEFORE 08/18/2016 -- incorrect indexing, so "halway" should be 11.
            # Otherwise, halfway should be 10.
            if '160818' in date:
                true_middle_idx = True # Keep this flag ON for all dates after this.

            if true_middle_idx is True:
                middle_idx = 10
            else:
                middle_idx = 11

            # Do this funky stuff to get default size:
            sizes = [i['size_x'] for i in ctrials]
            sizes = list(set(sizes))

            tmp_default_size = 40*df.get_events('StimAspectRatio')[0].value
            diffs = np.array(sizes) - tmp_default_size
            find_match = np.where(diffs==min(diffs, key=lambda x: abs(float(x) - tmp_default_size)))
            default_size = sizes[find_match[0][0]]

            anchor_trials = [i for i in ctrials if '_y0' in i['name'] and i['size_x']==default_size]
            anchor_names = list(set([i['name'] for i in anchor_trials]))

            morph_names = sorted(list(set([i['name'] for i in mtrials])), key=natural_keys)
            morphs = dict()
            for m in morph_names:

                morphs[m] = dict()
                morphs[m]['success'] = sum([1 for i in mtrials if i['name']==m and i['outcome']=='success'])
                morphs[m]['failure'] = sum([1 for i in mtrials if i['name']==m and i['outcome']=='failure'])
                morphs[m]['ignore'] = sum([1 for i in mtrials if i['name']==m and i['outcome']=='ignore'])
                morphs[m]['total'] = sum([morphs[m]['success'] + morphs[m]['failure'] + morphs[m]['ignore']])

            for m in anchor_names:

                if '_N1' in m:  # THIS IS SPACESHIP -- AG group, this is RIGHT
                    aname = 'morph0.png'
                elif '_N2' in m:  # THIS IS BUNNY -- this is LEFT
                    aname = 'morph21.png'

                if aname not in morphs.keys():
                    morphs[aname] = dict()

                morphs[aname]['success'] = sum([1 for i in anchor_trials if i['name']==m and i['outcome']=='success'])
                morphs[aname]['failure'] = sum([1 for i in anchor_trials if i['name']==m and i['outcome']=='failure'])
                morphs[aname]['ignore'] = sum([1 for i in anchor_trials if i['name']==m and i['outcome']=='ignore'])
                morphs[aname]['total'] = sum([morphs[aname]['success'] + morphs[aname]['failure'] + morphs[aname]['ignore']])

            M[t] = morphs

        # all_morph_names = ['morph%i.png' % int(i) for i in range(22)]
        all_morph_names = ['morph%i.png' % int(i) for i in range(22)]


        P[animal]['session'] = dict()
        session_keys = ['percent', 'total', 'success', 'failure', 'ignore']
        # initiate dict() for each session/morph:
        for session_key in session_keys:
            P[animal]['session'][session_key] = dict()
            for msession in M.keys():
                P[animal]['session'][session_key][msession] = dict()

        for mkey in M.keys():

            for morph in all_morph_names:

                morph_num = int(re.findall("[-+]?\d+?\d*", morph)[0])

                if morph not in M[mkey].keys() or M[mkey][morph]['total']==0:
                    for skey in P[animal]['session'].keys():
                        P[animal]['session'][skey][mkey][str(morph_num)] = 0.

                else:
                    for skey in P[animal]['session'].keys():

                        # if just need totals for a given morph in a given session:
                        if skey is not 'percent':
                            P[animal]['session'][skey][mkey][str(morph_num)] = float(M[mkey][morph][skey])

                        # otherwise, need to calculate %-choose-RIGHT (or LEFT) port:
                        # SEE NOTE BELOW on halway cutoff point...
                        elif skey == 'percent':
                            if morph_num <= middle_idx: # 11: #morph_num <= 11:
                                P[animal]['session'][skey][mkey][str(morph_num)] = float(M[mkey][morph]['success']/float(M[mkey][morph]['total']))
                            elif morph_num > middle_idx: #>= 11: #> 11:
                                P[animal]['session'][skey][mkey][str(morph_num)] = float(M[mkey][morph]['failure']/float(M[mkey][morph]['total']))

        ALL = dict()
        for morph in sorted(all_morph_names, key=natural_keys):
            ALL[morph] = dict()
            ALL[morph]['success'] = []
            ALL[morph]['failure'] = []
            ALL[morph]['ignore'] = []
            ALL[morph]['total'] = []
            for i in M.keys():
                if morph in M[i].keys():
                    ALL[morph]['success'].append(M[i][morph]['success'])
                    ALL[morph]['failure'].append(M[i][morph]['failure'])
                    ALL[morph]['ignore'].append(M[i][morph]['ignore'])
                    ALL[morph]['total'].append(M[i][morph]['total'])
                else:
                    ALL[morph]['success'].append(0)
                    ALL[morph]['failure'].append(0)
                    ALL[morph]['ignore'].append(0)
                    ALL[morph]['total'].append(0)

        percents = dict()
        totals = dict()
        successes = dict()
        failures = dict()
        ignores = dict()
        for m in sorted(all_morph_names, key=natural_keys):
            morph_num = int(re.findall("[-+]?\d+?\d*", m)[0])
            print morph_num
            totals[m] = float(sum(ALL[m]['total']))
            successes[m] = float(sum(ALL[m]['success']))
            failures[m] = float(sum(ALL[m]['failure']))
            ignores[m] = float(sum(ALL[m]['ignore']))
            if m not in ALL.keys() or sum(ALL[m]['total'])==0:
                percents[m] = 0
            else:
                # With nmorphs = 20, morphs 1-10.png are CHOOSE-RIGHT.
                # For now, plot %-choose-right (i.e., morphs1-10)
                # This means, "success" for morphs1-10, and "failure" for morphs11-20 (i.e,. animal went RIGHT, when should have gone LEFT)
                # ALL STUFF BEFORE 08/17/2016 was incorrectly assignign the halfway point in MW protocol:
                # i.e,. was assigning indices <=10 to "left" and >10 to "right" 
                # This should really be:  <=9 to left, >=10 to right... fixed on 08/17
                # SEE ABOVE, for session-parsed %s...
                if morph_num <= middle_idx: #< 11:
                    percents[m] = float(sum(ALL[m]['success'])) / float(sum(ALL[m]['total']))

                elif morph_num > middle_idx: #>= 11:
                    percents[m] = float(sum(ALL[m]['failure'])) / float(sum(ALL[m]['total']))

        P[animal]['percent_right'] = percents
        print percents
        P[animal]['totals'] = totals
        P[animal]['success'] = successes
        P[animal]['failure'] = failures
        P[animal]['ignore'] = ignores

        x = []
        xlabel = []
        for p in sorted(percents.keys(), key=natural_keys):
            x.append(percents[p])
            xlabel.append(p)

        x = np.flipud(x)
        xlabel = np.flipud(x)

        fig = plt.figure()
        plt.plot(x, 'r*')
        plt.ylabel('percent choose RIGHT port')
        plt.xlabel('morph #')
        subject = animal.split('_')[0]
        plt.title('%s' % subject)

        imname = '%s.png' % subject
        outdir = os.path.join(os.path.split(datadir)[0], 'figures')
        if not os.path.exists(outdir):
            os.makedirs(outdir)

        fig.savefig(outdir + '/' + imname)
        print outdir + '/' + imname

        if show_curve is True:
            plt.show()

    return P
예제 #12
0
def parse_trials(dfns, remove_orphans=True):
    """
    Parse session .mwk files.
    Key is session name values are lists of dicts for each trial in session.
    Looks for all response and display events that occur within session.

    dfns : list of strings
        contains paths to each .mwk file to be parsed
    
    remove_orphans : boolean
        for each response event, best matching display update event
        set this to 'True' to remove display events with unknown outcome events
    """

    trialdata = {}                                                              # initiate output dict
    
    for dfn in dfns:
        df = None
        df = pymworks.open(dfn)                                                 # open the datafile

        sname = os.path.split(dfn)[1]
        trialdata[sname] = []

        modes = df.get_events('#state_system_mode')                             # find timestamps for run-time start and end (2=run)
        # run_idxs = np.where(np.diff([i['time'] for i in modes])<20)             # 20 is kind of arbitray, but mode is updated twice for "run"
        start_ev = [i for i in modes if i['value']==2][0]
        
        # stop_ev_ev = [i for i in modes if i['time']>start_ev['time'] and (i['value']==0 or i['value']==1)]
        run_idxs = [i for i,e in enumerate(modes) if e['time']>start_ev['time']]

        bounds = []
        for r in run_idxs: #[0]:
            try:
                # stop_ev = next(i for i in modes[r:] if i['value']==0 or i['value']==1)
                stop_ev = next(i for i in modes[r:] if i['value']==0 or i['value']==1)
            except StopIteration:
                end_event_name = 'trial_end'
                print "NO STOP DETECTED IN STATE MODES. Using alternative timestamp: %s." % end_event_name
                stop_ev = df.get_events(end_event_name)[-1]
                print stop_ev
            bounds.append([modes[r]['time'], stop_ev['time']])

        bounds[:] = [x for x in bounds if not x[1]-x[0]<1]
        # print "................................................................"
        print "****************************************************************"
        print "Parsing file\n%s... " % dfn
        print "Found %i start events in session." % len(bounds)
        print "****************************************************************"


        for bidx,boundary in enumerate(bounds):
            if (boundary[1]-boundary[0])<1:
                del bounds[bidx]

            # print "................................................................"
            print "SECTION %i" % bidx
            print "................................................................"
            #M1:#tmp_devs = df.get_events('#stimDisplayUpdate')                      # get *all* display update events
            # tmp_devs = [i for i in tmp_devs if i['time']<= boundary[1] and\
            #             i['time']>=boundary[0]]                                 # only grab events within run-time bounds (see above)

            #M1:#devs = [e for e in tmp_devs if not e.value[0]==[None]]


            # Check stimDisplayUpdate events vs announceStimulus:
            stim_evs = df.get_events('#stimDisplayUpdate')
            devs = [e for e in stim_evs if not e.value[0]==None]
            idevs = [i for i in devs for v in i.value if 'png' in v['name']]

            ann_evs = df.get_events('#announceStimulus')

            # SEE: AG8_160705.mwk -- issue with sevs...
            try:
                sevs = [i for i in ann_evs if 'png' in i.value['name']]
            except TypeError as e:
                print dfn
                print e

            if not len(idevs)==len(sevs):
                print "MISMATCH in event counts in DF: %s" % dfn
                print "-------------------------"
                print "#stimDisplayUpdate %i and #announceStimulus %i." % (len(idevs), len(sevs))

            #M1:#devs = [e for e in stim_evs if e.value[0] is not None]
            im_names = sorted([i['name'] for d in idevs for i in d.value if '.png' in i['name']], key=natural_keys)


            #im_names = sorted([i['name'] for d in devs for i in d.value if '.png' in i['name']], key=natural_keys)

            resptypes = ['success','ignore','failure']
                             #,\ # 'aborted_counter']                           # list of response variables to track...
            
            outevs = df.get_events(resptypes)                                   # get all events with these vars
            outevs = [i for i in outevs if i['time']<= boundary[1] and\
                        i['time']>=boundary[0]]
            R = sorted([r for r in outevs if r.value > 0], key=lambda e: e.time)

            T = pymworks.events.display.to_trials(stim_evs, R,\
                        remove_unknown=False)                                   # match stim events to response events

            trials = T
            print "N total response events: ", len(trials)
            if remove_orphans:                                                  # this should always be true, generally...
                orphans = [(i,x) for i,x in enumerate(trials) if\
                            x['outcome']=='unknown']
                trials = [t for t in trials if not t['outcome']=='unknown']     # get rid of display events without known outcome within 'duration_multiplier' time
                print "Found and removed %i orphan stimulus events in file %s"\
                            % (len(orphans), dfn)
                print "N valid trials: %i" % len(trials)

            trialdata[sname].append(trials)

    return trialdata
def get_non_floats(fn, name=''):
    df = pymworks.open(fn)
    evs = df.get_events(name)
    for ev in evs:
        if type(ev.value) != float:
            print fn