def test_encryption_decryption(self): encryptParams = EncryptParams(EncryptAlgorithmType.AesEcb, 16) key = Blob(KEY, False) decryptKey = DecryptKey(key) encryptKey = AesAlgorithm.deriveEncryptKey(decryptKey.getKeyBits()) # Check key loading and key derivation. self.assertTrue(encryptKey.getKeyBits().equals(key)) self.assertTrue(decryptKey.getKeyBits().equals(key)) plainBlob = Blob(PLAINTEXT, False) # Encrypt data in AES_ECB. cipherBlob = AesAlgorithm.encrypt( encryptKey.getKeyBits(), plainBlob, encryptParams) self.assertTrue(cipherBlob.equals(Blob(CIPHERTEXT_ECB, False))) # Decrypt data in AES_ECB. receivedBlob = AesAlgorithm.decrypt( decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob)) # Encrypt/decrypt data in AES_CBC with auto-generated IV. encryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) cipherBlob = AesAlgorithm.encrypt( encryptKey.getKeyBits(), plainBlob, encryptParams) receivedBlob = AesAlgorithm.decrypt( decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob)) # Encrypt data in AES_CBC with specified IV. initialVector = Blob(INITIAL_VECTOR, False) encryptParams.setInitialVector(initialVector) cipherBlob = AesAlgorithm.encrypt( encryptKey.getKeyBits(), plainBlob, encryptParams) self.assertTrue(cipherBlob.equals(Blob(CIPHERTEXT_CBC_IV, False))) # Decrypt data in AES_CBC with specified IV. receivedBlob = AesAlgorithm.decrypt( decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob))
def test_encryption_decryption(self): encryptParams = EncryptParams(EncryptAlgorithmType.AesEcb, 16) key = Blob(KEY, False) decryptKey = DecryptKey(key) encryptKey = AesAlgorithm.deriveEncryptKey(decryptKey.getKeyBits()) # Check key loading and key derivation. self.assertTrue(encryptKey.getKeyBits().equals(key)) self.assertTrue(decryptKey.getKeyBits().equals(key)) plainBlob = Blob(PLAINTEXT, False) # Encrypt data in AES_ECB. cipherBlob = AesAlgorithm.encrypt(encryptKey.getKeyBits(), plainBlob, encryptParams) self.assertTrue(cipherBlob.equals(Blob(CIPHERTEXT_ECB, False))) # Decrypt data in AES_ECB. receivedBlob = AesAlgorithm.decrypt(decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob)) # Encrypt/decrypt data in AES_CBC with auto-generated IV. encryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) cipherBlob = AesAlgorithm.encrypt(encryptKey.getKeyBits(), plainBlob, encryptParams) receivedBlob = AesAlgorithm.decrypt(decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob)) # Encrypt data in AES_CBC with specified IV. initialVector = Blob(INITIAL_VECTOR, False) encryptParams.setInitialVector(initialVector) cipherBlob = AesAlgorithm.encrypt(encryptKey.getKeyBits(), plainBlob, encryptParams) self.assertTrue(cipherBlob.equals(Blob(CIPHERTEXT_CBC_IV, False))) # Decrypt data in AES_CBC with specified IV. receivedBlob = AesAlgorithm.decrypt(decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob))
def test_key_generation(self): keyParams = AesKeyParams(128) decryptKey = AesAlgorithm.generateKey(keyParams) encryptKey = AesAlgorithm.deriveEncryptKey(decryptKey.getKeyBits()) plainBlob = Blob(PLAINTEXT, False) # Encrypt/decrypt data in AES_CBC with auto-generated IV. encryptParams = EncryptParams(EncryptAlgorithmType.AesCbc, 16) cipherBlob = AesAlgorithm.encrypt(encryptKey.getKeyBits(), plainBlob, encryptParams) receivedBlob = AesAlgorithm.decrypt(decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob))
def test_key_generation(self): keyParams = AesKeyParams(128) decryptKey = AesAlgorithm.generateKey(keyParams) encryptKey = AesAlgorithm.deriveEncryptKey(decryptKey.getKeyBits()) plainBlob = Blob(PLAINTEXT, False) # Encrypt/decrypt data in AES_CBC with auto-generated IV. encryptParams = EncryptParams(EncryptAlgorithmType.AesCbc, 16) cipherBlob = AesAlgorithm.encrypt( encryptKey.getKeyBits(), plainBlob, encryptParams) receivedBlob = AesAlgorithm.decrypt( decryptKey.getKeyBits(), cipherBlob, encryptParams) self.assertTrue(receivedBlob.equals(plainBlob))
def test_create_d_key_data(self): # Create the group manager. manager = GroupManager( Name("Alice"), Name("data_type"), Sqlite3GroupManagerDb(self.dKeyDatabaseFilePath), 2048, 1, self.keyChain) newCertificateBlob = self.certificate.wireEncode() newCertificate = IdentityCertificate() newCertificate.wireDecode(newCertificateBlob) # Encrypt the D-KEY. data = manager._createDKeyData( "20150825T000000", "20150827T000000", Name("/ndn/memberA/KEY"), self.decryptKeyBlob, newCertificate.getPublicKeyInfo().getKeyDer()) # Verify the encrypted D-KEY. dataContent = data.getContent() # Get the nonce key. # dataContent is a sequence of the two EncryptedContent. encryptedNonce = EncryptedContent() encryptedNonce.wireDecode(dataContent) self.assertEqual(0, encryptedNonce.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.RsaOaep, encryptedNonce.getAlgorithmType()) blobNonce = encryptedNonce.getPayload() decryptParams = EncryptParams(EncryptAlgorithmType.RsaOaep) nonce = RsaAlgorithm.decrypt(self.decryptKeyBlob, blobNonce, decryptParams) # Get the D-KEY. # Use the size of encryptedNonce to find the start of encryptedPayload. payloadContent = dataContent.buf()[encryptedNonce.wireEncode().size():] encryptedPayload = EncryptedContent() encryptedPayload.wireDecode(payloadContent) self.assertEqual(16, encryptedPayload.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.AesCbc, encryptedPayload.getAlgorithmType()) decryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) decryptParams.setInitialVector(encryptedPayload.getInitialVector()) blobPayload = encryptedPayload.getPayload() largePayload = AesAlgorithm.decrypt(nonce, blobPayload, decryptParams) self.assertTrue(largePayload.equals(self.decryptKeyBlob))
def test_content_symmetric_encrypt(self): for input in encryptorAesTestInputs: data = Data() Encryptor.encryptData( data, input.plainText, input.keyName, input.key, input.encryptParams) self.assertTrue(data.getName().equals(Name("/FOR").append(input.keyName)), input.testName) self.assertTrue(input.encryptedContent.equals(data.getContent()), input.testName) content = EncryptedContent() content.wireDecode(data.getContent()) decryptedOutput = AesAlgorithm.decrypt( input.key, content.getPayload(), input.encryptParams) self.assertTrue(input.plainText.equals(decryptedOutput), input.testName)
def test_content_asymmetric_encrypt_large(self): for input in encryptorRsaTestInputs: largeContent = Blob(bytearray([ 0x73, 0x5a, 0xbd, 0x47, 0x0c, 0xfe, 0xf8, 0x7d, 0x2e, 0x17, 0xaa, 0x11, 0x6f, 0x23, 0xc5, 0x10, 0x23, 0x36, 0x88, 0xc4, 0x2a, 0x0f, 0x9a, 0x72, 0x54, 0x31, 0xa8, 0xb3, 0x51, 0x18, 0x9f, 0x0e, 0x1b, 0x93, 0x62, 0xd9, 0xc4, 0xf5, 0xf4, 0x3d, 0x61, 0x9a, 0xca, 0x05, 0x65, 0x6b, 0xc6, 0x41, 0xf9, 0xd5, 0x1c, 0x67, 0xc1, 0xd0, 0xd5, 0x6f, 0x7b, 0x70, 0xb8, 0x8f, 0xdb, 0x19, 0x68, 0x7c, 0xe0, 0x2d, 0x04, 0x49, 0xa9, 0xa2, 0x77, 0x4e, 0xfc, 0x60, 0x0d, 0x7c, 0x1b, 0x93, 0x6c, 0xd2, 0x61, 0xc4, 0x6b, 0x01, 0xe9, 0x12, 0x28, 0x6d, 0xf5, 0x78, 0xe9, 0x99, 0x0b, 0x9c, 0x4f, 0x90, 0x34, 0x3e, 0x06, 0x92, 0x57, 0xe3, 0x7a, 0x8f, 0x13, 0xc7, 0xf3, 0xfe, 0xf0, 0xe2, 0x59, 0x48, 0x15, 0xb9, 0xdb, 0x77, 0x07, 0x1d, 0x6d, 0xb5, 0x65, 0x17, 0xdf, 0x76, 0x6f, 0xb5, 0x43, 0xde, 0x71, 0xac, 0xf1, 0x22, 0xbf, 0xb2, 0xe5, 0xd9, 0x22, 0xf1, 0x67, 0x76, 0x71, 0x0c, 0xff, 0x99, 0x7b, 0x94, 0x9b, 0x24, 0x20, 0x80, 0xe3, 0xcc, 0x06, 0x4a, 0xed, 0xdf, 0xec, 0x50, 0xd5, 0x87, 0x3d, 0xa0, 0x7d, 0x9c, 0xe5, 0x13, 0x10, 0x98, 0x14, 0xc3, 0x90, 0x10, 0xd9, 0x25, 0x9a, 0x59, 0xe9, 0x37, 0x26, 0xfd, 0x87, 0xd7, 0xf4, 0xf9, 0x11, 0x91, 0xad, 0x5c, 0x00, 0x95, 0xf5, 0x2b, 0x37, 0xf7, 0x4e, 0xb4, 0x4b, 0x42, 0x7c, 0xb3, 0xad, 0xd6, 0x33, 0x5f, 0x0b, 0x84, 0x57, 0x7f, 0xa7, 0x07, 0x73, 0x37, 0x4b, 0xab, 0x2e, 0xfb, 0xfe, 0x1e, 0xcb, 0xb6, 0x4a, 0xc1, 0x21, 0x5f, 0xec, 0x92, 0xb7, 0xac, 0x97, 0x75, 0x20, 0xc9, 0xd8, 0x9e, 0x93, 0xd5, 0x12, 0x7a, 0x64, 0xb9, 0x4c, 0xed, 0x49, 0x87, 0x44, 0x5b, 0x4f, 0x90, 0x34, 0x3e, 0x06, 0x92, 0x57, 0xe3, 0x7a, 0x8f, 0x13, 0xc7, 0xf3, 0xfe, 0xf0, 0xe2, 0x59, 0x48, 0x15, 0xb9, 0xdb, 0x77, 0x07, 0x1d, 0x6d, 0xb5, 0x65, 0x17, 0xdf, 0x76, 0x6f, 0xb5, 0x43, 0xde, 0x71, 0xac, 0xf1, 0x22, 0xbf, 0xb2, 0xe5, 0xd9 ]), False) data = Data() rsaParams = RsaKeyParams(1024) keyName = Name("test") decryptKey = RsaAlgorithm.generateKey(rsaParams) encryptKey = RsaAlgorithm.deriveEncryptKey(decryptKey.getKeyBits()) eKey = encryptKey.getKeyBits() dKey = decryptKey.getKeyBits() encryptParams = EncryptParams(input.type) Encryptor.encryptData(data, largeContent, keyName, eKey, encryptParams) self.assertTrue(data.getName().equals(Name("/FOR").append(keyName)), input.testName) largeDataContent = data.getContent() # largeDataContent is a sequence of the two EncryptedContent. encryptedNonce = EncryptedContent() encryptedNonce.wireDecode(largeDataContent) self.assertTrue(keyName.equals(encryptedNonce.getKeyLocator().getKeyName()), input.testName) self.assertEqual(encryptedNonce.getInitialVector().size(), 0, input.testName) self.assertEqual(encryptedNonce.getAlgorithmType(), input.type, input.testName) # Use the size of encryptedNonce to find the start of encryptedPayload. payloadContent = largeDataContent.buf()[encryptedNonce.wireEncode().size():] encryptedPayload = EncryptedContent() encryptedPayload.wireDecode(payloadContent) nonceKeyName = Name(keyName) nonceKeyName.append("nonce") self.assertTrue(nonceKeyName.equals(encryptedPayload.getKeyLocator().getKeyName()), input.testName) self.assertEqual(encryptedPayload.getInitialVector().size(), 16, input.testName) self.assertEqual(encryptedPayload.getAlgorithmType(), EncryptAlgorithmType.AesCbc, input.testName) self.assertEqual( largeDataContent.size(), encryptedNonce.wireEncode().size() + encryptedPayload.wireEncode().size(), input.testName) blobNonce = encryptedNonce.getPayload() nonce = RsaAlgorithm.decrypt(dKey, blobNonce, encryptParams) encryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) encryptParams.setInitialVector(encryptedPayload.getInitialVector()) bufferPayload = encryptedPayload.getPayload() largePayload = AesAlgorithm.decrypt(nonce, bufferPayload, encryptParams) self.assertTrue(largeContent.equals(largePayload), input.testName)
def test_get_group_key(self): # Create the group manager. manager = GroupManager( Name("Alice"), Name("data_type"), Sqlite3GroupManagerDb(self.groupKeyDatabaseFilePath), 1024, 1, self.keyChain) self.setManager(manager) # Get the data list from the group manager. timePoint1 = Schedule.fromIsoString("20150825T093000") result = manager.getGroupKey(timePoint1) self.assertEqual(4, len(result)) # The first data packet contains the group's encryption key (public key). data = result[0] self.assertEqual( "/Alice/READ/data_type/E-KEY/20150825T090000/20150825T100000", data.getName().toUri()) groupEKey = EncryptKey(data.getContent()) # Get the second data packet and decrypt. data = result[1] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberA/ksk-123", data.getName().toUri()) ####################################################### Start decryption. dataContent = data.getContent() # Get the nonce key. # dataContent is a sequence of the two EncryptedContent. encryptedNonce = EncryptedContent() encryptedNonce.wireDecode(dataContent) self.assertEqual(0, encryptedNonce.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.RsaOaep, encryptedNonce.getAlgorithmType()) decryptParams = EncryptParams(EncryptAlgorithmType.RsaOaep) blobNonce = encryptedNonce.getPayload() nonce = RsaAlgorithm.decrypt(self.decryptKeyBlob, blobNonce, decryptParams) # Get the payload. # Use the size of encryptedNonce to find the start of encryptedPayload. payloadContent = dataContent.buf()[encryptedNonce.wireEncode().size():] encryptedPayload = EncryptedContent() encryptedPayload.wireDecode(payloadContent) self.assertEqual(16, encryptedPayload.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.AesCbc, encryptedPayload.getAlgorithmType()) decryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) decryptParams.setInitialVector(encryptedPayload.getInitialVector()) blobPayload = encryptedPayload.getPayload() largePayload = AesAlgorithm.decrypt(nonce, blobPayload, decryptParams) # Get the group D-KEY. groupDKey = DecryptKey(largePayload) ####################################################### End decryption. # Check the D-KEY. derivedGroupEKey = RsaAlgorithm.deriveEncryptKey( groupDKey.getKeyBits()) self.assertTrue(groupEKey.getKeyBits().equals( derivedGroupEKey.getKeyBits())) # Check the third data packet. data = result[2] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberB/ksk-123", data.getName().toUri()) # Check the fourth data packet. data = result[3] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberC/ksk-123", data.getName().toUri()) # Check invalid time stamps for getting the group key. timePoint2 = Schedule.fromIsoString("20150826T083000") self.assertEqual(0, len(manager.getGroupKey(timePoint2))) timePoint3 = Schedule.fromIsoString("20150827T023000") self.assertEqual(0, len(manager.getGroupKey(timePoint3)))
def test_content_key_request(self): prefix = Name("/prefix") suffix = Name("/a/b/c") expectedInterest = Name(prefix) expectedInterest.append(Encryptor.NAME_COMPONENT_READ) expectedInterest.append(suffix) expectedInterest.append(Encryptor.NAME_COMPONENT_E_KEY) cKeyName = Name(prefix) cKeyName.append(Encryptor.NAME_COMPONENT_SAMPLE) cKeyName.append(suffix) cKeyName.append(Encryptor.NAME_COMPONENT_C_KEY) timeMarker = Name("20150101T100000/20150101T120000") testTime1 = Schedule.fromIsoString("20150101T100001") testTime2 = Schedule.fromIsoString("20150101T110001") testTimeRounded1 = Name.Component("20150101T100000") testTimeRounded2 = Name.Component("20150101T110000") testTimeComponent2 = Name.Component("20150101T110001") # Create content keys required for this test case: for i in range(suffix.size()): self.createEncryptionKey(expectedInterest, timeMarker) expectedInterest = expectedInterest.getPrefix(-2).append( Encryptor.NAME_COMPONENT_E_KEY) expressInterestCallCount = [0] # Prepare a TestFace to instantly answer calls to expressInterest. class TestFace(object): def __init__(self, handleExpressInterest): self.handleExpressInterest = handleExpressInterest def expressInterest(self, interest, onData, onTimeout, onNetworkNack): return self.handleExpressInterest(interest, onData, onTimeout, onNetworkNack) def handleExpressInterest(interest, onData, onTimeout, onNetworkNack): expressInterestCallCount[0] += 1 interestName = Name(interest.getName()) interestName.append(timeMarker) self.assertTrue(interestName in self.encryptionKeys) onData(interest, self.encryptionKeys[interestName]) return 0 face = TestFace(handleExpressInterest) # Verify that the content key is correctly encrypted for each domain, and # the produce method encrypts the provided data with the same content key. testDb = Sqlite3ProducerDb(self.databaseFilePath) producer = Producer(prefix, suffix, face, self.keyChain, testDb) contentKey = [None] # Blob def checkEncryptionKeys(result, testTime, roundedTime, expectedExpressInterestCallCount): self.assertEqual(expectedExpressInterestCallCount, expressInterestCallCount[0]) self.assertEqual(True, testDb.hasContentKey(testTime)) contentKey[0] = testDb.getContentKey(testTime) params = EncryptParams(EncryptAlgorithmType.RsaOaep) for i in range(len(result)): key = result[i] keyName = key.getName() self.assertEqual(cKeyName, keyName.getSubName(0, 6)) self.assertEqual(keyName.get(6), roundedTime) self.assertEqual(keyName.get(7), Encryptor.NAME_COMPONENT_FOR) self.assertEqual(True, keyName.getSubName(8) in self.decryptionKeys) decryptionKey = self.decryptionKeys[keyName.getSubName(8)] self.assertEqual(True, decryptionKey.size() != 0) encryptedKeyEncoding = key.getContent() content = EncryptedContent() content.wireDecode(encryptedKeyEncoding) encryptedKey = content.getPayload() retrievedKey = RsaAlgorithm.decrypt(decryptionKey, encryptedKey, params) self.assertTrue(contentKey[0].equals(retrievedKey)) self.assertEqual(3, len(result)) # An initial test to confirm that keys are created for this time slot. contentKeyName1 = producer.createContentKey( testTime1, lambda keys: checkEncryptionKeys( keys, testTime1, testTimeRounded1, 3)) # Verify that we do not repeat the search for e-keys. The total # expressInterestCallCount should be the same. contentKeyName2 = producer.createContentKey( testTime2, lambda keys: checkEncryptionKeys( keys, testTime2, testTimeRounded2, 3)) # Confirm content key names are correct self.assertEqual(cKeyName, contentKeyName1.getPrefix(-1)) self.assertEqual(testTimeRounded1, contentKeyName1.get(6)) self.assertEqual(cKeyName, contentKeyName2.getPrefix(-1)) self.assertEqual(testTimeRounded2, contentKeyName2.get(6)) # Confirm that produce encrypts with the correct key and has the right name. testData = Data() producer.produce(testData, testTime2, Blob(DATA_CONTENT, False)) producedName = testData.getName() self.assertEqual(cKeyName.getPrefix(-1), producedName.getSubName(0, 5)) self.assertEqual(testTimeComponent2, producedName.get(5)) self.assertEqual(Encryptor.NAME_COMPONENT_FOR, producedName.get(6)) self.assertEqual(cKeyName, producedName.getSubName(7, 6)) self.assertEqual(testTimeRounded2, producedName.get(13)) dataBlob = testData.getContent() dataContent = EncryptedContent() dataContent.wireDecode(dataBlob) encryptedData = dataContent.getPayload() initialVector = dataContent.getInitialVector() params = EncryptParams(EncryptAlgorithmType.AesCbc, 16) params.setInitialVector(initialVector) decryptTest = AesAlgorithm.decrypt(contentKey[0], encryptedData, params) self.assertTrue(decryptTest.equals(Blob(DATA_CONTENT, False)))
def test_get_group_key(self): # Create the group manager. manager = GroupManager( Name("Alice"), Name("data_type"), Sqlite3GroupManagerDb(self.groupKeyDatabaseFilePath), 1024, 1, self.keyChain) self.setManager(manager) # Get the data list from the group manager. timePoint1 = Schedule.fromIsoString("20150825T093000") result = manager.getGroupKey(timePoint1) self.assertEqual(4, len(result)) # The first data packet contains the group's encryption key (public key). data = result[0] self.assertEqual( "/Alice/READ/data_type/E-KEY/20150825T090000/20150825T100000", data.getName().toUri()) groupEKey = EncryptKey(data.getContent()) # Get the second data packet and decrypt. data = result[1] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberA/ksk-123", data.getName().toUri()) ####################################################### Start decryption. dataContent = data.getContent() # Get the nonce key. # dataContent is a sequence of the two EncryptedContent. encryptedNonce = EncryptedContent() encryptedNonce.wireDecode(dataContent) self.assertEqual(0, encryptedNonce.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.RsaOaep, encryptedNonce.getAlgorithmType()) decryptParams = EncryptParams(EncryptAlgorithmType.RsaOaep) blobNonce = encryptedNonce.getPayload() nonce = RsaAlgorithm.decrypt(self.decryptKeyBlob, blobNonce, decryptParams) # Get the payload. # Use the size of encryptedNonce to find the start of encryptedPayload. payloadContent = dataContent.buf()[encryptedNonce.wireEncode().size():] encryptedPayload = EncryptedContent() encryptedPayload.wireDecode(payloadContent) self.assertEqual(16, encryptedPayload.getInitialVector().size()) self.assertEqual(EncryptAlgorithmType.AesCbc, encryptedPayload.getAlgorithmType()) decryptParams.setAlgorithmType(EncryptAlgorithmType.AesCbc) decryptParams.setInitialVector(encryptedPayload.getInitialVector()) blobPayload = encryptedPayload.getPayload() largePayload = AesAlgorithm.decrypt(nonce, blobPayload, decryptParams) # Get the group D-KEY. groupDKey = DecryptKey(largePayload) ####################################################### End decryption. # Check the D-KEY. derivedGroupEKey = RsaAlgorithm.deriveEncryptKey(groupDKey.getKeyBits()) self.assertTrue(groupEKey.getKeyBits().equals(derivedGroupEKey.getKeyBits())) # Check the third data packet. data = result[2] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberB/ksk-123", data.getName().toUri()) # Check the fourth data packet. data = result[3] self.assertEqual( "/Alice/READ/data_type/D-KEY/20150825T090000/20150825T100000/FOR/ndn/memberC/ksk-123", data.getName().toUri()) # Check invalid time stamps for getting the group key. timePoint2 = Schedule.fromIsoString("20150826T083000") self.assertEqual(0, len(manager.getGroupKey(timePoint2))) timePoint3 = Schedule.fromIsoString("20150827T023000") self.assertEqual(0, len(manager.getGroupKey(timePoint3)))
def test_content_key_request(self): prefix = Name("/prefix") suffix = Name("/a/b/c") expectedInterest = Name(prefix) expectedInterest.append(Encryptor.NAME_COMPONENT_READ) expectedInterest.append(suffix) expectedInterest.append(Encryptor.NAME_COMPONENT_E_KEY) cKeyName = Name(prefix) cKeyName.append(Encryptor.NAME_COMPONENT_SAMPLE) cKeyName.append(suffix) cKeyName.append(Encryptor.NAME_COMPONENT_C_KEY) timeMarker = Name("20150101T100000/20150101T120000") testTime1 = Schedule.fromIsoString("20150101T100001") testTime2 = Schedule.fromIsoString("20150101T110001") testTimeRounded1 = Name.Component("20150101T100000") testTimeRounded2 = Name.Component("20150101T110000") # Create content keys required for this test case: for i in range(suffix.size()): self.createEncryptionKey(expectedInterest, timeMarker) expectedInterest = expectedInterest.getPrefix(-2).append( Encryptor.NAME_COMPONENT_E_KEY) expressInterestCallCount = [0] # Prepare a TestFace to instantly answer calls to expressInterest. class TestFace(object): def __init__(self, handleExpressInterest): self.handleExpressInterest = handleExpressInterest def expressInterest(self, interest, onData, onTimeout): return self.handleExpressInterest(interest, onData, onTimeout) def handleExpressInterest(interest, onData, onTimeout): expressInterestCallCount[0] += 1 interestName = Name(interest.getName()) interestName.append(timeMarker) self.assertTrue(interestName in self.encryptionKeys) onData(interest, self.encryptionKeys[interestName]) return 0 face = TestFace(handleExpressInterest) # Verify that the content key is correctly encrypted for each domain, and # the produce method encrypts the provided data with the same content key. testDb = Sqlite3ProducerDb(self.databaseFilePath) producer = Producer(prefix, suffix, face, self.keyChain, testDb) contentKey = [None] # Blob def checkEncryptionKeys( result, testTime, roundedTime, expectedExpressInterestCallCount): self.assertEqual(expectedExpressInterestCallCount, expressInterestCallCount[0]) self.assertEqual(True, testDb.hasContentKey(testTime)) contentKey[0] = testDb.getContentKey(testTime) params = EncryptParams(EncryptAlgorithmType.RsaOaep) for i in range(len(result)): key = result[i] keyName = key.getName() self.assertEqual(cKeyName, keyName.getSubName(0, 6)) self.assertEqual(keyName.get(6), roundedTime) self.assertEqual(keyName.get(7), Encryptor.NAME_COMPONENT_FOR) self.assertEqual( True, keyName.getSubName(8) in self.decryptionKeys) decryptionKey = self.decryptionKeys[keyName.getSubName(8)] self.assertEqual(True, decryptionKey.size() != 0) encryptedKeyEncoding = key.getContent() content = EncryptedContent() content.wireDecode(encryptedKeyEncoding) encryptedKey = content.getPayload() retrievedKey = RsaAlgorithm.decrypt( decryptionKey, encryptedKey, params) self.assertTrue(contentKey[0].equals(retrievedKey)) self.assertEqual(3, len(result)) # An initial test to confirm that keys are created for this time slot. contentKeyName1 = producer.createContentKey( testTime1, lambda keys: checkEncryptionKeys(keys, testTime1, testTimeRounded1, 3)) # Verify that we do not repeat the search for e-keys. The total # expressInterestCallCount should be the same. contentKeyName2 = producer.createContentKey( testTime2, lambda keys: checkEncryptionKeys(keys, testTime2, testTimeRounded2, 3)) # Confirm content key names are correct self.assertEqual(cKeyName, contentKeyName1.getPrefix(-1)) self.assertEqual(testTimeRounded1, contentKeyName1.get(6)) self.assertEqual(cKeyName, contentKeyName2.getPrefix(-1)) self.assertEqual(testTimeRounded2, contentKeyName2.get(6)) # Confirm that produce encrypts with the correct key and has the right name. testData = Data() producer.produce(testData, testTime2, Blob(DATA_CONTENT, False)) producedName = testData.getName() self.assertEqual(cKeyName.getPrefix(-1), producedName.getSubName(0, 5)) self.assertEqual(testTimeRounded2, producedName.get(5)) self.assertEqual(Encryptor.NAME_COMPONENT_FOR, producedName.get(6)) self.assertEqual(cKeyName, producedName.getSubName(7, 6)) self.assertEqual(testTimeRounded2, producedName.get(13)) dataBlob = testData.getContent() dataContent = EncryptedContent() dataContent.wireDecode(dataBlob) encryptedData = dataContent.getPayload() initialVector = dataContent.getInitialVector() params = EncryptParams(EncryptAlgorithmType.AesCbc, 16) params.setInitialVector(initialVector) decryptTest = AesAlgorithm.decrypt(contentKey[0], encryptedData, params) self.assertTrue(decryptTest.equals(Blob(DATA_CONTENT, False)))