orginal = validation_dataset.inputs[corresponding_index, :1, :, :, 64] moving = np.expand_dims(moving, axis=1) reference = np.expand_dims(reference, axis=1) orginal = np.expand_dims(orginal, axis=1) moving = (moving / moving.max()) moving = moving * 255 reference = (reference / reference.max()) reference = reference * 255 orginal = (orginal / reference.max()) orginal = orginal * 255 return np.concatenate((moving, orginal, reference), axis=0) net.board = Board(port=8097, host="http://localhost", env=base_network, display_pred=True, prepare_pred=prepare_pred) net.add_observer("after_epoch", update_board) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=net.optimizer, mode="min", factor=0.5, patience=4, verbose=True, min_lr=1e-7) train_history, valid_history = net.training( manager=manager, nb_epochs=(1 if "CI_MODE" in os.environ else 150000), checkpointdir=None, # outdir, fold_index=0,
img = (img / img.max()) * 255 board.viewer.images( img, opts={ "title": "sampling", "caption": "sampling"}, win="sampling") model = VAE(input_dim=(28 * 28), hidden_dim=128, latent_dim=20) interface = DeepLearningInterface( model=model, optimizer_name="Adam", learning_rate=0.001, loss=DecodeLoss()) interface.board = Board( port=8097, host="http://localhost", env="vae", display_pred=True, prepare_pred=prepare_pred) interface.add_observer("after_epoch", update_board) interface.add_observer("after_epoch", sampling) test_history, train_history = interface.training( manager=manager, nb_epochs=10, checkpointdir=None, fold_index=0, with_validation=True) ############################################################################# # Conclusion # ---------- #
in_channels=1, num_classes=2, nb_e2e=32, nb_e2n=64, nb_n2g=30, dropout=0.5, leaky_alpha=0.1, twice_e2e=False, dense_sml=True) my_loss = pynet.get_tools()["losses"]["MSELoss"]() model = interfaces["BrainNetCNNGraph"](net_params, optimizer_name="Adam", learning_rate=0.01, weight_decay=0.0005, loss_name="MSELoss") model.board = Board(port=8097, host="http://localhost", env="main") model.add_observer("after_epoch", update_board) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=model.optimizer, mode="min", factor=0.1, patience=5, verbose=True, eps=1e-8) test_history, train_history = model.training(manager=manager, nb_epochs=15, checkpointdir=None, fold_index=0, scheduler=scheduler, with_validation=True) y_pred, X, y_true, loss, values = model.testing(manager=manager, with_logit=True,
pretrained = None params = NetParameters(input_shape=(61, 73, 61), cardinality=1, layers=[3, 4, 6, 3], n_channels_in=1, decode=True) interface = ResAENetEncoder(params, optimizer_name="Adam", learning_rate=0.001, loss_name="MSELoss", pretrained=pretrained, use_cuda=True) # Train model if pretrained is None: interface.board = Board(port=8097, host="http://localhost", env="resnet") interface.add_observer("after_epoch", update_board) test_history, train_history = interface.training( manager=manager, nb_epochs=100, checkpointdir=os.path.join(WORKDIR, "checkpoint_" + name), fold_index=0, with_validation=False) def dummy_loss(*args, **kwargs): return -1 # Get latent parameters if not os.path.isfile(PREDFILE):
start_filts=64, with_logit=False).to(device) encoder = BGDiscriminator(in_shape=in_shape, in_channels=channels, out_channels=latent_dim, start_filts=64, with_logit=False).to(device) g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002) cd_optimizer = torch.optim.Adam(code_discriminator.parameters(), lr=0.0002) d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002) e_optimizer = torch.optim.Adam(encoder.parameters(), lr=0.0002) real_y = Variable( torch.ones((batch_size, channels)).to(device, non_blocking=True)) fake_y = Variable( torch.zeros((batch_size, channels)).to(device, non_blocking=True)) board = Board(port=8097, host="http://localhost", env="vae") outdir = "/tmp/vae-gan/checkpoint" if not os.path.isdir(outdir): os.makedirs(outdir) g_iter = 1 d_iter = 1 cd_iter = 1 total_iter = 200000 train_loader = manager.get_dataloader(train=True, validation=False, fold_index=0).train loader = infinite_train_generartor(train_loader) for iteration in range(total_iter):
"target": small_image, "cost": "corratio", "interp": "trilinear", "dof": 6}), "biasfield": (biasfield, {"nb_iterations": 3}), "downsample": (downsample, {"scale": 2}), "padd": (padd, {"shape": [256, 256, 256], "fill_value": 0}), } ############################################################################# # Test preprocessings # -------------------- # # We now apply the preprocessing steps on the loaded image. Results are # directly displayed in your browser at http://localhost:8097. from pynet.plotting import Board board = Board(port=8097, host="http://localhost", env="data-preprocessing") for key, (fct, kwargs) in processes.items(): print("Processing {0}...".format(key)) if key in ("reorient2std", "biasfield", "register"): normalized = fct(small_image, **kwargs).get_data() else: normalized = fct(small_image.get_data(), **kwargs) if key in ("padd", "downsample", "register"): images = np.expand_dims(rescale(normalized, dynamic=(0, 255)), axis=0) else: images = np.asarray([rescale(small_image.get_data(), dynamic=(0, 255)), rescale(normalized, dynamic=(0, 255))]) images = images[..., images.shape[-1] // 2] images = np.expand_dims(images, axis=1) board.viewer.images( images, opts={"title": key, "caption": key}, win=key)
network=net, clustering=kmeans, data_loader=train_loader, n_batchs=10, pca_dim=6, assignment_logfile=None, use_cuda=False) model = DeepClusterClassifier( net_params, optimizer_name="SGD", learning_rate=0.001, momentum=0.9, weight_decay=10**-5, # loss=my_loss) loss_name="CrossEntropyLoss") model.board = Board(port=8097, host="http://localhost", env="deepcluster") model.add_observer("before_epoch", update_pseudo_labels) model.add_observer("after_epoch", update_board) # Train model test_history, train_history = model.training( manager=manager, nb_epochs=N_EPOCHS, checkpointdir=None, fold_index=0, scheduler=None, with_validation=False) # Test model
optimizer_name="Adam", learning_rate=0.00001, loss=DecodeLoss(rec_loss="mse"), use_cuda=False) name = MODEL else: params = NetParameters(input_dim=iterator.shape[-1]) interface = STAAENetEncoder(params, optimizer_name="Adam", learning_rate=0.001, loss_name="MSELoss", use_cuda=True) name = MODEL # Train model interface.board = Board(port=8097, host="http://localhost", env="dvae") interface.add_observer("after_epoch", update_board) test_history, train_history = interface.training(manager=manager, nb_epochs=50, checkpointdir=os.path.join( WORKDIR, "checkpoint_" + name), fold_index=0, with_validation=False) # Create test data manager = DataManager.from_numpy(test_inputs=iterator, batch_size=BATCH_SIZE, add_input=True)
"add_offset": (add_offset, { "factor": (0.05, 0.1) }), "compose_transforms": (compose_transforms, {}), } ############################################################################# # Test transformations # -------------------- # # We now apply the transformations on the loaded image. Results are # directly displayed in your browser at http://localhost:8097. from pynet.plotting import Board board = Board(port=8097, host="http://localhost", env="data-augmentation") for cnt in range(10): print("Iteration: ", cnt) for key, (fct, kwargs) in transforms.items(): images = np.asarray([image, np.clip(fct(image, **kwargs), 0, 255)]) images = images[..., images.shape[-1] // 2] images = np.expand_dims(images, axis=1) board.viewer.images(images, opts={ "title": key, "caption": key }, win=key) time.sleep(1) #############################################################################
net_params = pynet.NetParameters(in_order=ICO_ORDER, in_channels=2, out_channels=N_CLASSES, depth=3, start_filts=32, conv_mode="1ring", up_mode="transpose", cachedir=os.path.join(OUTDIR, "cache")) model = SphericalUNetEncoder(net_params, optimizer_name="SGD", learning_rate=0.1, momentum=0.99, weight_decay=10**-4, loss_name="CrossEntropyLoss", use_cuda=True) model.board = Board(port=8097, host="http://localhost", env="spherical_unet") model.add_observer("after_epoch", update_board) # Train model test_history, train_history = model.training(manager=manager, nb_epochs=N_EPOCHS, checkpointdir=None, fold_index=0, scheduler=None, with_validation=False) # Test model y_pred, X, y_true, loss, values = model.testing(manager=manager, with_logit=True, predict=True) print(y_pred.shape, X.shape, y_true.shape)