def test_plot_all_nonet_no_mask(plotting_data): """ Test plot_all_nonet_no_mask functionality """ base_dir = str(Path(__file__).parent/"examples") temp_dir = tempfile.TemporaryDirectory() dir_path = str(temp_dir.name) network = None ID = '002' thr = 0.95 node_size = 2 smooth = 2 conn_model = 'sps' parlistfile = None atlas = 'whole_brain_cluster_labels_PCA200' roi = f"{base_dir}/miscellaneous/pDMN_3_bin.nii.gz" prune = 1 norm = 1 hpass = 0.1 binary = False extract_strategy = 'mean' edge_threshold = '99%' conn_matrix = plotting_data['conn_matrix'] labels = plotting_data['labels'] coords = plotting_data['coords'] start_time = time.time() plot_gen.plot_all_func(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, thr, node_size, edge_threshold, smooth, prune, parlistfile, norm, binary, hpass, extract_strategy) print("%s%s%s" % ('plot_all --> finished: ', str(np.round(time.time() - start_time, 1)), 's')) temp_dir.cleanup()
def test_plot_all_nonet_with_mask(plotting_data): """ Test plot_all_nonet_with_mask functionality """ temp_dir = tempfile.TemporaryDirectory() dir_path = str(temp_dir.name) network = None ID = '002' thr = 0.95 node_size = 'None' smooth = 2 prune = False norm = 1 hpass = 0.1 binary = False conn_model = 'sps' atlas = b'whole_brain_cluster_labels_PCA200' parlistfile = None roi = None extract_strategy = 'mean' edge_threshold = '99%' conn_matrix = plotting_data['conn_matrix'] labels = plotting_data['labels'] coords = plotting_data['coords'] # Force an isolate in the matrix conn_matrix[:, 0] = 0 conn_matrix[0, :] = 0 # Adds coverage coords = np.array(coords) labels = np.array(labels) start_time = time.time() plot_gen.plot_all_func(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, thr, node_size, edge_threshold, smooth, prune, parlistfile, norm, binary, hpass, extract_strategy, edge_color_override=True) print("%s%s%s" % ('plot_all (Masking version) --> finished: ', str(np.round(time.time() - start_time, 1)), 's')) temp_dir.cleanup()
def _run_interface(self, runtime): from pynets.plotting import plot_gen if self.inputs.coords.ndim == 1: print('Only 1 node detected. Plotting is not applicable...') else: plot_gen.plot_all_func(self.inputs.conn_matrix, self.inputs.conn_model, self.inputs.atlas, self.inputs.dir_path, self.inputs.ID, self.inputs.network, self.inputs.labels.tolist(), self.inputs.roi, [tuple(coord) for coord in self.inputs.coords.tolist()], self.inputs.thr, self.inputs.node_size, self.inputs.edge_threshold, self.inputs.smooth, self.inputs.prune, self.inputs.uatlas, self.inputs.c_boot, self.inputs.norm, self.inputs.binary, self.inputs.hpass) self._results['out'] = 'None' return runtime
def test_plot_all_nonet_with_mask(): """ Test plot_all_nonet_with_mask functionality """ import tempfile base_dir = str(Path(__file__).parent / "examples") dir_path = str(tempfile.TemporaryDirectory().name) os.makedirs(dir_path) network = None ID = '002' thr = 0.95 node_size = 2 smooth = 2 prune = 1 norm = 1 hpass = 0.1 binary = False conn_model = 'sps' atlas = 'whole_brain_cluster_labels_PCA200' parlistfile = None roi = None extract_strategy = 'mean' conn_matrix = np.genfromtxt( f"{base_dir}/miscellaneous/002_rsn-Default_nodetype-parc_est-sps_thrtype-PROP_thr-0.94.txt" ) edge_threshold = '99%' labels_file_path = f"{base_dir}/miscellaneous/Default_func_labelnames_wb.pkl" labels_file = open(labels_file_path, 'rb') labels = pickle.load(labels_file) coord_file_path = f"{base_dir}/miscellaneous/Default_func_coords_wb.pkl" coord_file = open(coord_file_path, 'rb') coords = pickle.load(coord_file) start_time = time.time() #coords already a list plot_gen.plot_all_func(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, edge_threshold, thr, node_size, smooth, prune, parlistfile, norm, binary, hpass, extract_strategy) print("%s%s%s" % ('plot_all (Masking version) --> finished: ', str(np.round(time.time() - start_time, 1)), 's'))
def test_plot_all_nonet_no_mask(): """ Test plot_all_nonet_no_mask functionality """ # Set example inputs base_dir = str(Path(__file__).parent / "examples") dir_path = base_dir + '/002/fmri' network = None ID = '002' thr = 0.95 node_size = 2 smooth = 2 c_boot = 3 conn_model = 'sps' parlistfile = None atlas = 'whole_brain_cluster_labels_PCA200' roi = None prune = 1 norm = 1 hpass = 0.1 binary = False conn_matrix = np.genfromtxt( dir_path + '/whole_brain_cluster_labels_PCA200/002_Default_est_sps_0.94.txt') edge_threshold = '99%' labels_file_path = dir_path + '/whole_brain_cluster_labels_PCA200/Default_func_labelnames_wb.pkl' labels_file = open(labels_file_path, 'rb') labels = pickle.load(labels_file) coord_file_path = dir_path + '/whole_brain_cluster_labels_PCA200/Default_func_coords_wb.pkl' coord_file = open(coord_file_path, 'rb') coords = pickle.load(coord_file) start_time = time.time() #coords already a list plot_gen.plot_all_func(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, edge_threshold, thr, node_size, smooth, prune, parlistfile, c_boot, norm, binary, hpass) print("%s%s%s" % ('plot_all --> finished: ', str(np.round(time.time() - start_time, 1)), 's'))