예제 #1
0
def test_prune_disconnected():
    """
    Test pruning functionality
    """
    base_dir = str(Path(__file__).parent / "examples")
    in_mat = np.load(
        f"{base_dir}/miscellaneous/graphs/002_modality-func_rsn-Default_est-cov_nodetype-spheres-2mm_smooth-2fwhm_hpass-0.1Hz_thrtype-PROP_thr-0.95.npy"
    )
    G = nx.from_numpy_array(in_mat)

    start_time = time.time()
    [G, pruned_nodes] = netstats.prune_disconnected(G)
    print("%s%s%s" % (
        'thresh_and_fit (Functional, proportional thresholding) --> finished: ',
        str(np.round(time.time() - start_time, 1)), 's'))

    assert G is not None
    assert pruned_nodes is not None
예제 #2
0
def test_prune_disconnected():
    """
    Test pruning functionality
    """
    base_dir = str(Path(__file__).parent / "examples")
    in_mat = np.load(
        base_dir +
        '/002/fmri/graphs/002_Default_est_cov_0.95prop_TESTmm_3nb_2fwhm_0.1Hz_func.npy'
    )
    G = nx.from_numpy_array(in_mat)

    start_time = time.time()
    [G, pruned_nodes] = netstats.prune_disconnected(G)
    print("%s%s%s" % (
        'thresh_and_fit (Functional, proportional thresholding) --> finished: ',
        str(np.round(time.time() - start_time, 1)), 's'))

    assert G is not None
    assert pruned_nodes is not None
예제 #3
0
def test_raw_mets():
    """
    Test raw_mets extraction functionality
    """
    from pynets.stats.netstats import global_efficiency, average_local_efficiency
    from networkx.algorithms import degree_assortativity_coefficient, average_clustering, \
        average_shortest_path_length, degree_pearson_correlation_coefficient, graph_number_of_cliques, transitivity, \
        sigma
    base_dir = str(Path(__file__).parent/"examples")
    est_path = f"{base_dir}/miscellaneous/sub-0021001_rsn-Default_nodetype-parc_model-sps_template-MNI152_T1_thrtype-DENS_thr-0.19.npy"
    in_mat = np.load(est_path)
    G = nx.from_numpy_array(in_mat)
    [G, _] = netstats.prune_disconnected(G)
    metric_list_glob = [global_efficiency, average_local_efficiency, degree_assortativity_coefficient,
                        average_clustering, average_shortest_path_length, degree_pearson_correlation_coefficient,
                        graph_number_of_cliques, transitivity]
    for i in metric_list_glob:
        net_met_val = netstats.raw_mets(G, i)
        print(i)
        print(net_met_val)
        assert net_met_val is not np.nan
예제 #4
0
def test_raw_mets():
    """
    Test raw_mets extraction functionality
    """
    from pynets.stats.netstats import global_efficiency, average_local_efficiency
    from networkx.algorithms import degree_assortativity_coefficient, average_clustering, average_shortest_path_length, degree_pearson_correlation_coefficient, graph_number_of_cliques, transitivity, sigma
    base_dir = str(Path(__file__).parent / "examples")
    est_path = base_dir + '/002/fmri/DesikanKlein2012/graphs/0021001_Default_est_sps_0.19densparc_mm.npy'
    in_mat = np.load(est_path)
    G = nx.from_numpy_array(in_mat)
    [G, _] = netstats.prune_disconnected(G)
    metric_list_glob = [
        global_efficiency, average_local_efficiency,
        degree_assortativity_coefficient, average_clustering,
        average_shortest_path_length, degree_pearson_correlation_coefficient,
        graph_number_of_cliques, transitivity
    ]
    for i in metric_list_glob:
        net_met_val = netstats.raw_mets(G, i)
        print(i)
        print(net_met_val)
        assert net_met_val is not np.nan
예제 #5
0
def test_prune_disconnected(connected_case, fallback_lcc):
    """
    Test pruning functionality
    """
    base_dir = str(Path(__file__).parent/"examples")
    if connected_case is True:
        in_mat = np.load(f"{base_dir}/miscellaneous/graphs/002_modality-func_rsn-Default_model-cov_nodetype-spheres-2mm_smooth-2fwhm_hpass-0.1Hz_thrtype-PROP_thr-0.95.npy")
        G = nx.from_numpy_array(in_mat)
    elif connected_case is False:
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_node(3)
    start_time = time.time()
    [G_out, pruned_nodes] = netstats.prune_disconnected(G)
    print("%s%s%s" % ('Pruning disconnected test --> finished: ',
                      str(np.round(time.time() - start_time, 1)), 's'))
    assert type(G_out) is nx.Graph
    assert type(pruned_nodes) is list
    if connected_case is True:
        assert len(pruned_nodes) == 0
    elif connected_case is False:
        assert len(pruned_nodes) > 0
        assert len(list(G_out.nodes())) < len(list(G.nodes()))
예제 #6
0
파일: plot_gen.py 프로젝트: devhliu/PyNets
def plot_all_struct(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, thr,
                    node_size, edge_threshold, prune, uatlas, target_samples, norm, binary, track_type, directget,
                    max_length):
    """
    Plot adjacency matrix, connectogram, and glass brain for functional connectome.

    Parameters
    ----------
    conn_matrix : array
        NxN matrix.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance,
       partcorr for partial correlation). sps type is used by default.
    atlas : str
        Name of atlas parcellation used.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    ID : str
        A subject id or other unique identifier.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of
        brain subgraphs.
    labels : list
        List of string labels corresponding to ROI nodes.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    coords : list
        List of (x, y, z) tuples corresponding to an a-priori defined set (e.g. a coordinate atlas).
    thr : float
        A value, between 0 and 1, to threshold the graph using any variety of methods
        triggered through other options.
    node_size : int
        Spherical centroid node size in the case that coordinate-based centroids
        are used as ROI's.
    edge_threshold : float
        The actual value, between 0 and 1, that the graph was thresholded (can differ from thr if target was not
        successfully obtained.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    target_samples : int
        Total number of streamline samples specified to generate streams.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    track_type : str
        Tracking algorithm used (e.g. 'local' or 'particle').
    directget : str
        The statistical approach to tracking. Options are: det (deterministic), closest (clos), boot (bootstrapped),
        and prob (probabilistic).
    max_length : int
        Maximum fiber length threshold in mm to restrict tracking.
    """
    import matplotlib
    matplotlib.use('agg')
    import os
    import os.path as op
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from matplotlib import colors
    import seaborn as sns
    from pynets.core import thresholding
    from pynets.plotting import plot_gen, plot_graphs
    from pynets.stats.netstats import most_important, prune_disconnected
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    ch2better_loc = pkg_resources.resource_filename("pynets", "templates/ch2better.nii.gz")

    coords = list(coords)
    labels = list(labels)
    if len(coords) > 0:
        dpi_resolution = 500
        if '\'b' in atlas:
            atlas = atlas.decode('utf-8')
        if (prune == 1 or prune == 2) and len(coords) == conn_matrix.shape[0]:
            G_pre = nx.from_numpy_matrix(np.abs(conn_matrix))
            if prune == 1:
                [G, pruned_nodes] = prune_disconnected(G_pre)
            elif prune == 2:
                [G, pruned_nodes] = most_important(G_pre)
            else:
                G = G_pre
                pruned_nodes = []
            pruned_nodes.sort(reverse=True)
            coords_pre = list(coords)
            labels_pre = list(labels)
            if len(pruned_nodes) > 0:
                for j in pruned_nodes:
                    labels_pre.pop(j)
                    coords_pre.pop(j)
                conn_matrix = nx.to_numpy_array(G)
                labels = labels_pre
                coords = coords_pre
            else:
                print('No nodes to prune for plot...')

        coords = list(tuple(x) for x in coords)

        namer_dir = dir_path + '/figures'
        if not os.path.isdir(namer_dir):
            os.makedirs(namer_dir, exist_ok=True)

        # Plot connectogram
        if len(conn_matrix) > 20:
            try:
                plot_gen.plot_connectogram(conn_matrix, conn_model, atlas, namer_dir, ID, network, labels)
            except RuntimeWarning:
                print('\n\n\nWarning: Connectogram plotting failed!')
        else:
            print('Warning: Cannot plot connectogram for graphs smaller than 20 x 20!')

        # Plot adj. matrix based on determined inputs
        if not node_size or node_size == 'None':
            node_size = 'parc'
        plot_graphs.plot_conn_mat_struct(conn_matrix, conn_model, atlas, namer_dir, ID, network, labels, roi, thr,
                                         node_size, target_samples, track_type, directget, max_length)

        # Plot connectome
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (namer_dir, '/', ID, '_modality-dwi_',
                                                                     '%s' % ("%s%s%s" % ('rsn-', network, '_') if
                                                                             network is not None else ''),
                                                                     '%s' % ("%s%s%s" % ('roi-',
                                                                                         op.basename(roi).split(
                                                                                             '.')[0],
                                                                                         '_') if roi is not
                                                                                                 None else ''),
                                                                     'est-', conn_model, '_',
                                                                     '%s' % (
                                                                         "%s%s%s" % ('nodetype-spheres-', node_size,
                                                                                     'mm_')
                                                                         if ((node_size != 'parc') and
                                                                             (node_size is not None))
                                                                         else 'nodetype-parc_'),
                                                                     "%s" % ("%s%s%s" % (
                                                                         'samples-', int(target_samples),
                                                                         'streams_')
                                                                             if float(target_samples) > 0 else '_'),
                                                                     'tt-', track_type, '_dg-', directget,
                                                                     '_ml-', max_length,
                                                                     '_thr-', thr, '_glass_viz.png')
        if roi:
            # Save coords to pickle
            coord_path = "%s%s%s%s" % (namer_dir, '/coords_', op.basename(roi).split('.')[0], '_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)

            # Save labels to pickle
            labels_path = "%s%s%s%s" % (namer_dir, '/labelnames_', op.basename(roi).split('.')[0], '_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)
        else:
            # Save coords to pickle
            coord_path = "%s%s" % (namer_dir, '/coords_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)

            # Save labels to pickle
            labels_path = "%s%s" % (namer_dir, '/labelnames_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)

        connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)], node_size=0.0001, black_bg=True)
        connectome.add_overlay(ch2better_loc, alpha=0.45, cmap=plt.cm.gray)
        #connectome.add_overlay(ch2better_loc, alpha=0.35, cmap=plt.cm.gray)
        conn_matrix = np.array(np.array(thresholding.autofix(conn_matrix)))
        [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
        if node_size == 'parc':
            node_size_plot = int(6)
        else:
            node_size_plot = int(node_size)
        if len(coords) != conn_matrix.shape[0]:
            raise RuntimeWarning('\nWARNING: Number of coordinates does not match conn_matrix dimensions.')
        else:
            norm = colors.Normalize(vmin=-1, vmax=1)
            clust_pal = sns.color_palette("Blues_r", conn_matrix.shape[0])
            clust_colors = colors.to_rgba_array(clust_pal)
            fa_path = dir_path + '/../reg_dmri/dmri_tmp/DSN/Warped.nii.gz'
            if os.path.isfile(fa_path):
                connectome.add_overlay(img=fa_path,
                                       threshold=0.01, alpha=0.25, cmap=plt.cm.copper)

            connectome.add_graph(conn_matrix, coords, edge_threshold=edge_threshold, edge_cmap=plt.cm.binary,
                                 edge_vmax=float(z_max), edge_vmin=float(z_min), node_size=node_size_plot,
                                 node_color=clust_colors)
            connectome.savefig(out_path_fig, dpi=dpi_resolution)
    else:
        raise RuntimeError('\nERROR: no coordinates to plot! Are you running plotting outside of pynets\'s internal '
                           'estimation schemes?')

    plt.close('all')

    return
예제 #7
0
파일: plot_gen.py 프로젝트: devhliu/PyNets
def plot_all_func(conn_matrix, conn_model, atlas, dir_path, ID, network, labels, roi, coords, thr,
                  node_size, edge_threshold, smooth, prune, uatlas, c_boot, norm, binary, hpass):
    """
    Plot adjacency matrix, connectogram, and glass brain for functional connectome.

    Parameters
    ----------
    conn_matrix : array
        NxN matrix.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance,
       partcorr for partial correlation). sps type is used by default.
    atlas : str
        Name of atlas parcellation used.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    ID : str
        A subject id or other unique identifier.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of
        brain subgraphs.
    labels : list
        List of string labels corresponding to ROI nodes.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    coords : list
        List of (x, y, z) tuples corresponding to an a-priori defined set (e.g. a coordinate atlas).
    thr : float
        A value, between 0 and 1, to threshold the graph using any variety of methods
        triggered through other options.
    node_size : int
        Spherical centroid node size in the case that coordinate-based centroids
        are used as ROI's.
    edge_threshold : float
        The actual value, between 0 and 1, that the graph was thresholded (can differ from thr if target was not
        successfully obtained.
    smooth : int
        Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    c_boot : int
        Number of bootstraps if user specified circular-block bootstrapped resampling of the node-extracted time-series.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    hpass : bool
        High-pass filter values (Hz) to apply to node-extracted time-series.
    """
    import os
    import os.path as op
    import matplotlib
    matplotlib.use('agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets.core import thresholding
    from pynets.plotting import plot_gen, plot_graphs
    from pynets.stats.netstats import most_important, prune_disconnected
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    ch2better_loc = pkg_resources.resource_filename("pynets", "templates/ch2better.nii.gz")

    coords = list(coords)
    labels = list(labels)
    if len(coords) > 0:
        dpi_resolution = 500
        if '\'b' in atlas:
            atlas = atlas.decode('utf-8')
        if (prune == 1 or prune == 2) and len(coords) == conn_matrix.shape[0]:
            G_pre = nx.from_numpy_matrix(np.abs(conn_matrix))
            if prune == 1:
                [G, pruned_nodes] = prune_disconnected(G_pre)
            elif prune == 2:
                [G, pruned_nodes] = most_important(G_pre)
            else:
                G = G_pre
                pruned_nodes = []
            pruned_nodes.sort(reverse=True)
            print('(Display)')
            coords_pre = list(coords)
            labels_pre = list(labels)
            if len(pruned_nodes) > 0:
                for j in pruned_nodes:
                    labels_pre.pop(j)
                    coords_pre.pop(j)
                conn_matrix = nx.to_numpy_array(G)
                labels = labels_pre
                coords = coords_pre
            else:
                print('No nodes to prune for plot...')

        coords = list(tuple(x) for x in coords)

        namer_dir = dir_path + '/figures'
        if not os.path.isdir(namer_dir):
            os.makedirs(namer_dir, exist_ok=True)

        # Plot connectogram
        if len(conn_matrix) > 20:
            try:
                plot_gen.plot_connectogram(conn_matrix, conn_model, atlas, namer_dir, ID, network, labels)
            except RuntimeWarning:
                print('\n\n\nWarning: Connectogram plotting failed!')
        else:
            print('Warning: Cannot plot connectogram for graphs smaller than 20 x 20!')

        # Plot adj. matrix based on determined inputs
        if not node_size or node_size == 'None':
            node_size = 'parc'
        plot_graphs.plot_conn_mat_func(conn_matrix, conn_model, atlas, namer_dir, ID, network, labels, roi, thr,
                                       node_size, smooth, c_boot, hpass)

        # Plot connectome
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (namer_dir, '/', ID, '_modality-func_',
                                                             '%s' % ("%s%s%s" % ('rsn-', network, '_') if
                                                                     network is not None else ''),
                                                             '%s' % ("%s%s%s" % ('roi-', op.basename(roi).split('.')[0],
                                                                                 '_') if roi is not None else ''),
                                                             'est-', conn_model, '_',
                                                             '%s' % (
                                                                 "%s%s%s" % ('nodetype-spheres-', node_size, 'mm_') if
                                                                 ((node_size != 'parc') and (node_size is not None))
                                                                 else 'nodetype-parc_'),
                                                             "%s" % ("%s%s%s" % ('boot-', int(c_boot), 'iter_') if
                                                                     float(c_boot) > 0 else ''),
                                                             "%s" % ("%s%s%s" % ('smooth-', smooth, 'fwhm_') if
                                                                     float(smooth) > 0 else ''),
                                                             "%s" % ("%s%s%s" % ('hpass-', hpass, 'Hz_') if
                                                                     hpass is not None else ''),
                                                             '_thr-', thr, '_glass_viz.png')
        if roi:
            # Save coords to pickle
            coord_path = "%s%s%s%s" % (namer_dir, '/coords_', op.basename(roi).split('.')[0], '_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)

            # Save labels to pickle
            labels_path = "%s%s%s%s" % (namer_dir, '/labelnames_', op.basename(roi).split('.')[0], '_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)

        else:
            # Save coords to pickle
            coord_path = "%s%s" % (namer_dir, '/coords_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)

            # Save labels to pickle
            labels_path = "%s%s" % (namer_dir, '/labelnames_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)

        connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)], node_size=0.0001, black_bg=True)
        connectome.add_overlay(ch2better_loc, alpha=0.45, cmap=plt.cm.gray)
        #connectome.add_overlay(ch2better_loc, alpha=0.35, cmap=plt.cm.gray)
        conn_matrix = np.array(np.array(thresholding.autofix(conn_matrix)))
        [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
        if node_size == 'parc':
            node_size_plot = int(6)
        else:
            node_size_plot = int(node_size)
        if len(coords) != conn_matrix.shape[0]:
            raise RuntimeWarning('\nWARNING: Number of coordinates does not match conn_matrix dimensions. If you are '
                                 'using disparity filtering, try relaxing the α threshold.')
        else:
            color_theme = 'Blues'
            #color_theme = 'Greens'
            #color_theme = 'Reds'
            node_color = 'auto'
            connectome.add_graph(conn_matrix, coords, edge_threshold=edge_threshold, edge_cmap=color_theme,
                                 edge_vmax=float(z_max), edge_vmin=float(z_min), node_size=node_size_plot,
                                 node_color='auto')
            connectome.savefig(out_path_fig, dpi=dpi_resolution)
    else:
        raise RuntimeError('\nERROR: no coordinates to plot! Are you running plotting outside of pynets\'s internal '
                           'estimation schemes?')

    plt.close('all')

    return
예제 #8
0
def local_thresholding_prop(conn_matrix, coords, labels, thr):
    """
    Threshold the adjacency matrix by building from the minimum spanning tree (MST) and adding
    successive N-nearest neighbour degree graphs to achieve target proportional threshold.

    Parameters
    ----------
    conn_matrix : array
        Weighted NxN matrix.
    thr : float
        A proportional threshold, between 0 and 1, to achieve through local thresholding.

    Returns
    -------
    conn_matrix_thr : array
        Weighted, MST local-thresholded, NxN matrix.
    """
    from pynets.core import thresholding
    from pynets.stats import netstats

    fail_tol = 100
    conn_matrix = np.nan_to_num(conn_matrix)
    G = nx.from_numpy_matrix(np.abs(conn_matrix))
    if not nx.is_connected(G):
        [G, pruned_nodes] = netstats.prune_disconnected(G)
        pruned_nodes.sort(reverse=True)
        coords_pre = list(coords)
        labels_pre = list(labels)
        if len(pruned_nodes) > 0:
            for j in pruned_nodes:
                labels_pre.pop(j)
                coords_pre.pop(j)
            conn_matrix = nx.to_numpy_array(G)
            labels = labels_pre
            coords = coords_pre

    maximum_edges = G.number_of_edges()
    min_t = nx.minimum_spanning_tree(thresholding.weight_to_distance(G),
                                     weight="distance")
    len_edges = min_t.number_of_edges()
    upper_values = np.triu_indices(np.shape(conn_matrix)[0], k=1)
    weights = np.array(conn_matrix[upper_values])
    edgenum = int(float(thr) * float(len(weights[~np.isnan(weights)])))

    if len_edges > edgenum:
        print("%s%s%s" % (
            'Warning: The minimum spanning tree already has: ', len_edges,
            ' edges, select more edges. Local Threshold will be applied by just retaining the Minimum '
            'Spanning Tree'))
        conn_matrix_thr = nx.to_numpy_array(G)
        return conn_matrix_thr, coords, labels

    k = 1
    len_edge_list = []
    while len_edges < edgenum and k <= np.shape(conn_matrix)[0] and (
            len(len_edge_list[-fail_tol:]) -
            len(set(len_edge_list[-fail_tol:]))) < (fail_tol - 1):
        # print(k)
        # print(len_edges)
        len_edge_list.append(len_edges)
        # Create nearest neighbour graph
        nng = thresholding.knn(conn_matrix, k)

        # Remove edges from the NNG that exist already in the new graph/MST
        nng.remove_edges_from(min_t.edges())

        number_before = nng.number_of_edges()
        if nng.number_of_edges() == 0 and number_before >= maximum_edges:
            break

        # Add weights to NNG
        for e in nng.edges():
            nng.edges[e[0], e[1]]['weight'] = float(conn_matrix[e[0], e[1]])

        # Obtain list of edges from the NNG in order of weight
        edge_list = sorted(nng.edges(data=True),
                           key=lambda t: t[2]['weight'],
                           reverse=True)

        # Add edges in order of connectivity strength
        for edge in edge_list:
            # print("%s%s" % ('Adding edge to mst: ', edge))
            min_t.add_edges_from([edge])
            len_edges = min_t.number_of_edges()
            if len_edges >= edgenum:
                print(len_edges)
                break
        k += 1

    conn_matrix_bin = thresholding.binarize(
        nx.to_numpy_array(min_t,
                          nodelist=sorted(min_t.nodes()),
                          dtype=np.float64))

    # Enforce original dimensionality by padding with zeros.
    if conn_matrix_bin.shape != conn_matrix.shape:
        if conn_matrix.shape[0] > conn_matrix_bin.shape[0]:
            result = np.zeros(conn_matrix.shape)
            result[:conn_matrix_bin.shape[0], :conn_matrix_bin.
                   shape[1]] = conn_matrix_bin
            conn_matrix_thr = np.multiply(conn_matrix, result)
        else:
            result = np.zeros(conn_matrix_bin.shape)
            result[:conn_matrix.shape[0], :conn_matrix.shape[1]] = conn_matrix
            conn_matrix_thr = np.multiply(conn_matrix_bin, result)
    else:
        conn_matrix_thr = np.multiply(conn_matrix, conn_matrix_bin)

    return conn_matrix_thr, coords, labels
예제 #9
0
def local_thresholding_dens(conn_matrix, thr):
    """
    Threshold the adjacency matrix by building from the minimum spanning tree (MST) and adding
    successive N-nearest neighbour degree graphs to achieve target density threshold.

    Parameters
    ----------
    conn_matrix : array
        Weighted NxN matrix.
    thr : float
        A density threshold, between 0 and 1, to achieve through local thresholding.

    Returns
    -------
    conn_matrix_thr : array
        Weighted, MST local-thresholded, NxN matrix.
    """
    from pynets import thresholding
    from pynets.stats import netstats

    fail_tol = 10
    conn_matrix = np.nan_to_num(conn_matrix)
    G = nx.from_numpy_matrix(conn_matrix)
    if not nx.is_connected(G):
        [G, _] = netstats.prune_disconnected(G)

    maximum_edges = G.number_of_edges()
    G = thresholding.weight_to_distance(G)
    min_t = nx.minimum_spanning_tree(G, weight="distance")
    mst_density = nx.density(min_t)
    G_density = nx.density(G)
    if mst_density > G_density:
        print("%s%s%s" % (
            'Warning: The minimum spanning tree already has: ', thr,
            ' density. Local Threshold will be applied by just retaining the Minimum Spanning Tree'
        ))
        conn_matrix_thr = nx.to_numpy_array(G)
        return conn_matrix_thr

    k = 1
    dense_list = []
    while mst_density < float(thr) and (len(dense_list[-fail_tol:]) - len(
            set(dense_list[-fail_tol:]))) < (fail_tol - 1):
        print(k)
        print(mst_density)
        dense_list.append(mst_density)
        # Create nearest neighbour graph
        nng = thresholding.knn(conn_matrix, k)
        number_before = nng.number_of_edges()
        # Remove edges from the NNG that exist already in the new graph/MST
        nng.remove_edges_from(min_t.edges())
        if nng.number_of_edges() == 0 and number_before >= maximum_edges:
            break

        # Add weights to NNG
        for e in nng.edges():
            nng.edges[e[0], e[1]]['weight'] = float(conn_matrix[e[0], e[1]])

        # Obtain list of edges from the NNG in order of weight
        edge_list = sorted(nng.edges(data=True),
                           key=lambda t: t[2]['weight'],
                           reverse=True)
        # Add edges in order of connectivity strength
        for edge in edge_list:
            min_t.add_edges_from([edge])
            mst_density = thresholding.est_density((nx.to_numpy_array(min_t)))
            # print("%s%s" % ('Adding edge to mst: ', edge))
            if mst_density >= G_density or mst_density >= float(thr):
                # print(mst_density)
                break

        if (len(dense_list[-fail_tol:]) -
                len(set(dense_list[-fail_tol:]))) >= (fail_tol - 1):
            print("%s%s%s" %
                  ('Cannot apply local thresholding to achieve density of: ',
                   thr,
                   '. Using maximally saturated connected matrix instead...'))

        k += 1

    conn_matrix_thr = nx.to_numpy_array(min_t,
                                        nodelist=sorted(min_t.nodes()),
                                        dtype=np.float64)
    if len(min_t.nodes()) < conn_matrix.shape[0]:
        raise RuntimeWarning(
            "%s%s%s" %
            ('Cannot apply local thresholding to achieve density of: ', thr,
             '. Try a higher -thr or -min_thr'))

    return conn_matrix_thr
예제 #10
0
def local_thresholding_prop(conn_matrix, thr):
    """
    Threshold the adjacency matrix by building from the minimum spanning tree (MST) and adding
    successive N-nearest neighbour degree graphs to achieve target proportional threshold.

    Parameters
    ----------
    conn_matrix : array
        Weighted NxN matrix.
    thr : float
        A proportional threshold, between 0 and 1, to achieve through local thresholding.

    Returns
    -------
    conn_matrix_thr : array
        Weighted, MST local-thresholded, NxN matrix.
    """
    from pynets import thresholding
    from pynets.stats import netstats

    fail_tol = 10
    conn_matrix = np.nan_to_num(conn_matrix)
    G = nx.from_numpy_matrix(conn_matrix)
    if not nx.is_connected(G):
        [G, _] = netstats.prune_disconnected(G)

    maximum_edges = G.number_of_edges()
    G = thresholding.weight_to_distance(G)
    min_t = nx.minimum_spanning_tree(G, weight="distance")
    len_edges = min_t.number_of_edges()
    upper_values = np.triu_indices(np.shape(conn_matrix)[0], k=1)
    weights = np.array(conn_matrix[upper_values])
    weights = weights[~np.isnan(weights)]
    edgenum = int(float(thr) * float(len(weights)))
    if len_edges > edgenum:
        print("%s%s%s" % (
            'Warning: The minimum spanning tree already has: ', len_edges,
            ' edges, select more edges. Local Threshold will be applied by just retaining the Minimum '
            'Spanning Tree'))
        conn_matrix_thr = nx.to_numpy_array(G)
        return conn_matrix_thr

    k = 1
    len_edge_list = []
    while len_edges < edgenum and k <= np.shape(conn_matrix)[0] and (
            len(len_edge_list[-fail_tol:]) -
            len(set(len_edge_list[-fail_tol:]))) < (fail_tol - 1):
        print(k)
        print(len_edges)
        len_edge_list.append(len_edges)
        # Create nearest neighbour graph
        nng = thresholding.knn(conn_matrix, k)
        number_before = nng.number_of_edges()
        # Remove edges from the NNG that exist already in the new graph/MST
        nng.remove_edges_from(min_t.edges())
        if nng.number_of_edges() == 0 and number_before >= maximum_edges:
            break

        # Add weights to NNG
        for e in nng.edges():
            nng.edges[e[0], e[1]]['weight'] = float(conn_matrix[e[0], e[1]])

        # Obtain list of edges from the NNG in order of weight
        edge_list = sorted(nng.edges(data=True),
                           key=lambda t: t[2]['weight'],
                           reverse=True)
        # Add edges in order of connectivity strength
        for edge in edge_list:
            # print("%s%s" % ('Adding edge to mst: ', edge))
            min_t.add_edges_from([edge])
            min_t_mx = nx.to_numpy_array(min_t)
            len_edges = nx.from_numpy_matrix(min_t_mx).number_of_edges()
            if len_edges >= edgenum:
                # print(len_edges)
                break

        if (len(len_edge_list[-fail_tol:]) -
                len(set(len_edge_list[-fail_tol:]))) >= (fail_tol - 1):
            print("%s%s%s" %
                  ('Cannot apply local thresholding to achieve threshold of: ',
                   thr,
                   '. Using maximally saturated connected matrix instead...'))

        k += 1

    conn_matrix_thr = nx.to_numpy_array(min_t,
                                        nodelist=sorted(min_t.nodes()),
                                        dtype=np.float64)
    if len(min_t.nodes()) < conn_matrix.shape[0]:
        raise RuntimeWarning(
            "%s%s%s" %
            ('Cannot apply local thresholding to achieve threshold of: ', thr,
             '. Try a higher -thr or -min_thr'))

    return conn_matrix_thr
예제 #11
0
def plot_all(conn_matrix, conn_model, atlas, dir_path, ID, network, labels,
             roi, coords, thr, node_size, edge_threshold, smooth, prune,
             uatlas, c_boot, norm, binary, hpass):
    """

    :param conn_matrix:
    :param conn_model:
    :param atlas:
    :param dir_path:
    :param ID:
    :param network:
    :param labels:
    :param roi:
    :param coords:
    :param thr:
    :param node_size:
    :param edge_threshold:
    :param smooth:
    :param prune:
    :param uatlas:
    :param c_boot:
    :param norm:
    :param binary:
    :param hpass:
    :return:
    """
    import matplotlib
    matplotlib.use('agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets import plotting, thresholding
    from pynets.plotting import plot_gen, plot_graphs
    from pynets.stats.netstats import most_important, prune_disconnected
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    coords = list(coords)
    labels = list(labels)
    if len(coords) > 0:
        dpi_resolution = 500
        if '\'b' in atlas:
            atlas = atlas.decode('utf-8')
        if (prune == 1 or prune == 2) and len(coords) == conn_matrix.shape[0]:
            G_pre = nx.from_numpy_matrix(conn_matrix)
            if prune == 1:
                [G, pruned_nodes] = prune_disconnected(G_pre)
            elif prune == 2:
                [G, pruned_nodes] = most_important(G_pre)
            else:
                G = G_pre
                pruned_nodes = []
            pruned_nodes.sort(reverse=True)
            print('(Display)')
            coords_pre = list(coords)
            labels_pre = list(labels)
            if len(pruned_nodes) > 0:
                for j in pruned_nodes:
                    labels_pre.pop(j)
                    coords_pre.pop(j)
                conn_matrix = nx.to_numpy_array(G)
                labels = labels_pre
                coords = coords_pre
            else:
                print('No nodes to prune for plot...')

        coords = list(tuple(x) for x in coords)
        # Plot connectogram
        if len(conn_matrix) > 20:
            try:
                plot_gen.plot_connectogram(conn_matrix, conn_model, atlas,
                                           dir_path, ID, network, labels)
            except RuntimeWarning:
                print('\n\n\nWarning: Connectogram plotting failed!')
        else:
            print(
                'Warning: Cannot plot connectogram for graphs smaller than 20 x 20!'
            )

        # Plot adj. matrix based on determined inputs
        if not node_size or node_size == 'None':
            node_size = 'parc'
        plot_graphs.plot_conn_mat_func(conn_matrix, conn_model, atlas,
                                       dir_path, ID, network, labels, roi, thr,
                                       node_size, smooth, c_boot, hpass)

        # Plot connectome
        if roi:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', atlas, '_', conn_model, '_',
                op.basename(roi).split('.')[0], "%s" %
                ("%s%s%s" %
                 ('_', network, '_') if network else "_"), thr, '_', node_size,
                '%s' % ("mm_" if node_size != 'parc' else "_"), "%s" %
                ("%s%s" %
                 (int(c_boot), 'nb_') if float(c_boot) > 0 else 'nb_'), "%s" %
                ("%s%s" %
                 (smooth, 'fwhm_') if float(smooth) > 0 else ''), "%s" %
                ("%s%s" % (hpass, 'Hz_') if hpass is not None else ''),
                'func_glass_viz.png')

            # Save coords to pickle
            coord_path = "%s%s%s%s" % (dir_path, '/coords_',
                                       op.basename(roi).split('.')[0],
                                       '_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)
            # Save labels to pickle
            labels_path = "%s%s%s%s" % (dir_path, '/labelnames_',
                                        op.basename(roi).split('.')[0],
                                        '_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)
        else:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', atlas, '_', conn_model, "%s" %
                ("%s%s%s" %
                 ('_', network, '_') if network else "_"), thr, '_', node_size,
                '%s' % ("mm_" if node_size != 'parc' else "_"), "%s" %
                ("%s%s" %
                 (int(c_boot), 'nb_') if float(c_boot) > 0 else 'nb_'), "%s" %
                ("%s%s" %
                 (smooth, 'fwhm_') if float(smooth) > 0 else ''), "%s" %
                ("%s%s" % (hpass, 'Hz_') if hpass is not None else ''),
                'func_glass_viz.png')
            # Save coords to pickle
            coord_path = "%s%s" % (dir_path, '/coords_plotting.pkl')
            with open(coord_path, 'wb') as f:
                pickle.dump(coords, f, protocol=2)
            # Save labels to pickle
            labels_path = "%s%s" % (dir_path, '/labelnames_plotting.pkl')
            with open(labels_path, 'wb') as f:
                pickle.dump(labels, f, protocol=2)

        ch2better_loc = pkg_resources.resource_filename(
            "pynets", "templates/ch2better.nii.gz")
        connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)),
                                            [(0, 0, 0)],
                                            node_size=0.0001,
                                            black_bg=True)
        connectome.add_overlay(ch2better_loc, alpha=0.45, cmap=plt.cm.gray)
        #connectome.add_overlay(ch2better_loc, alpha=0.35, cmap=plt.cm.gray)
        conn_matrix = np.array(np.array(thresholding.autofix(conn_matrix)))
        [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
        if node_size == 'parc':
            node_size_plot = int(2)
            if uatlas:
                connectome.add_contours(uatlas,
                                        filled=True,
                                        alpha=0.20,
                                        cmap=plt.cm.gist_rainbow)
        else:
            node_size_plot = int(node_size)
        if len(coords) != conn_matrix.shape[0]:
            raise RuntimeWarning(
                '\nWARNING: Number of coordinates does not match conn_matrix dimensions. If you are '
                'using disparity filtering, try relaxing the α threshold.')
        else:
            color_theme = 'Blues'
            #color_theme = 'Greens'
            #color_theme = 'Reds'
            node_color = 'auto'
            connectome.add_graph(conn_matrix,
                                 coords,
                                 edge_threshold=edge_threshold,
                                 edge_cmap=color_theme,
                                 edge_vmax=float(z_max),
                                 edge_vmin=float(z_min),
                                 node_size=node_size_plot,
                                 node_color='auto')
            connectome.savefig(out_path_fig, dpi=dpi_resolution)
    else:
        raise RuntimeError(
            '\nERROR: no coordinates to plot! Are you running plotting outside of pynets\'s internal '
            'estimation schemes?')
    return
예제 #12
0
def create_gb_palette(mat,
                      edge_cmap,
                      coords,
                      labels,
                      node_size='auto',
                      node_cmap=None,
                      prune=True):
    """
    Create conectome color palatte based on topography.

    Parameters
    ----------
    mat : array
        NxN matrix.
    edge_cmap: colormap
        colormap used for representing the weight of the edges.
    coords : list
        List of (x, y, z) tuples corresponding to an a-priori defined set (e.g. a coordinate atlas).
    labels : list
        List of string labels corresponding to ROI nodes.
    node_size : int
        Spherical centroid node size in the case that coordinate-based centroids
        are used as ROI's.
    node_size: scalar or array_like
        size(s) of the nodes in points^2.
    node_cmap: colormap
        colormap used for representing the community assignment of the nodes.
    """
    import random
    import seaborn as sns
    import networkx as nx
    from pynets.core import thresholding
    from matplotlib import colors
    from sklearn.preprocessing import minmax_scale
    from pynets.stats.netstats import community_resolution_selection, prune_disconnected

    mat = np.array(np.array(thresholding.autofix(mat)))
    if prune is True:
        [G,
         pruned_nodes] = prune_disconnected(nx.from_numpy_matrix(np.abs(mat)))
        pruned_nodes.sort(reverse=True)
        coords_pre = list(coords)
        labels_pre = list(labels)
        if len(pruned_nodes) > 0:
            for j in pruned_nodes:
                del labels_pre[j], coords_pre[j]
            mat = nx.to_numpy_array(G)
            labels = labels_pre
            coords = coords_pre
        else:
            print('No nodes to prune for plotting...')
    else:
        G = nx.from_numpy_matrix(np.abs(mat))

    # Node centralities
    try:
        node_centralities = list(
            nx.algorithms.eigenvector_centrality_numpy(
                G, weight='weight').values())
    except:
        node_centralities = len(coords) * [1]
    max_node_size = (1 / mat.shape[0] *
                     1e3 if node_size == 'auto' else node_size)
    node_sizes = np.array(
        minmax_scale(node_centralities, feature_range=(1, max_node_size)))

    # Node communities
    _, node_comm_aff_mat, resolution, num_comms = community_resolution_selection(
        G)

    # Path lengths
    edge_lengths = []
    for edge_dict in [i[1] for i in nx.all_pairs_shortest_path_length(G)]:
        edge_lengths.extend(list(edge_dict.values()))

    edge_sizes = np.array(minmax_scale(edge_lengths, feature_range=(0.5, 2)))

    # Nodes
    if not node_cmap:
        # Generate as many randomly distinct colors as num_comms
        def random_color(n):
            ret = []
            r = int(random.random() * 256)
            g = int(random.random() * 256)
            b = int(random.random() * 256)
            step = 256 / n
            for i in range(n):
                r += step
                g += step
                b += step
                r = int(r) % 256
                g = int(g) % 256
                b = int(b) % 256
                ret.append((r, g, b))
            return ret

        flatui = [
            '#{:02x}{:02x}{:02x}'.format(i[0], i[1], i[2])
            for i in random_color(num_comms)
        ]

        try:
            ls_cmap = colors.LinearSegmentedColormap.from_list(
                node_comm_aff_mat, sns.color_palette(flatui,
                                                     n_colors=num_comms))
            matplotlib.cm.register_cmap("community", ls_cmap)
            clust_pal = sns.color_palette("community", n_colors=mat.shape[0])
        except:
            clust_pal = sns.color_palette("Set2", n_colors=mat.shape[0])
    else:
        clust_pal = sns.color_palette(node_cmap, n_colors=mat.shape[0])
    clust_pal_nodes = colors.to_rgba_array(clust_pal)

    # Edges
    z_min = np.percentile(mat[mat > 0], 10)
    z_max = np.percentile(mat[mat > 0], 90)
    edge_cmap_pl = sns.color_palette(edge_cmap)
    clust_pal_edges = colors.ListedColormap(edge_cmap_pl.as_hex())

    return mat, clust_pal_edges, clust_pal_nodes, node_sizes, edge_sizes, z_min, z_max, coords, labels