예제 #1
0
def basic_test(board_id, file):
    with ConnectHelper.session_with_chosen_probe(
            unique_id=board_id, **get_session_options()) as session:
        board = session.board
        addr = 0
        size = 0
        f = None
        binary_file = "l1_"

        if file is None:
            binary_file = os.path.join(parentdir, 'binaries',
                                       board.test_binary)
        else:
            binary_file = file

        print("binary file: %s" % binary_file)

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_first_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start
        addr_flash = rom_region.start + rom_region.length // 2

        target = board.target
        flash = rom_region.flash

        print("\n\n------ GET Unique ID ------")
        print("Unique ID: %s" % board.unique_id)

        print("\n\n------ TEST READ / WRITE CORE REGISTER ------")
        pc = target.read_core_register('pc')
        print("initial pc: 0x%X" % target.read_core_register('pc'))
        # write in pc dummy value
        target.write_core_register('pc', 0x3D82)
        print("now pc: 0x%X" % target.read_core_register('pc'))
        # write initial pc value
        target.write_core_register('pc', pc)
        print("initial pc value rewritten: 0x%X" %
              target.read_core_register('pc'))

        msp = target.read_core_register('msp')
        psp = target.read_core_register('psp')
        print("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))

        control = target.read_core_register('control')
        faultmask = target.read_core_register('faultmask')
        basepri = target.read_core_register('basepri')
        primask = target.read_core_register('primask')
        print(
            "CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x"
            % (control, faultmask, basepri, primask))

        target.write_core_register('primask', 1)
        newPrimask = target.read_core_register('primask')
        print("New PRIMASK = 0x%02x" % newPrimask)
        target.write_core_register('primask', primask)
        newPrimask = target.read_core_register('primask')
        print("Restored PRIMASK = 0x%02x" % newPrimask)

        if target.has_fpu:
            s0 = target.read_core_register('s0')
            print("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
            target.write_core_register('s0', math.pi)
            newS0 = target.read_core_register('s0')
            print("New S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
            target.write_core_register('s0', s0)
            newS0 = target.read_core_register('s0')
            print("Restored S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))

        print("\n\n------ TEST HALT / RESUME ------")

        print("resume")
        target.resume()
        sleep(0.2)

        print("halt")
        target.halt()
        print("HALT: pc: 0x%X" % target.read_core_register('pc'))
        sleep(0.2)

        print("\n\n------ TEST STEP ------")

        print("reset and halt")
        target.reset_and_halt()
        currentPC = target.read_core_register('pc')
        print("HALT: pc: 0x%X" % currentPC)
        sleep(0.2)

        for i in range(4):
            print("step")
            target.step()
            newPC = target.read_core_register('pc')
            print("STEP: pc: 0x%X" % newPC)
            currentPC = newPC
            sleep(0.2)

        print("\n\n------ TEST READ / WRITE MEMORY ------")
        target.halt()
        print("READ32/WRITE32")
        val = randrange(0, 0xffffffff)
        print("write32 0x%X at 0x%X" % (val, addr))
        target.write_memory(addr, val)
        res = target.read_memory(addr)
        print("read32 at 0x%X: 0x%X" % (addr, res))
        if res != val:
            print("ERROR in READ/WRITE 32")

        print("\nREAD16/WRITE16")
        val = randrange(0, 0xffff)
        print("write16 0x%X at 0x%X" % (val, addr + 2))
        target.write_memory(addr + 2, val, 16)
        res = target.read_memory(addr + 2, 16)
        print("read16 at 0x%X: 0x%X" % (addr + 2, res))
        if res != val:
            print("ERROR in READ/WRITE 16")

        print("\nREAD8/WRITE8")
        val = randrange(0, 0xff)
        print("write8 0x%X at 0x%X" % (val, addr + 1))
        target.write_memory(addr + 1, val, 8)
        res = target.read_memory(addr + 1, 8)
        print("read8 at 0x%X: 0x%X" % (addr + 1, res))
        if res != val:
            print("ERROR in READ/WRITE 8")

        print("\n\n------ TEST READ / WRITE MEMORY BLOCK ------")
        data = [randrange(1, 50) for x in range(size)]
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        error = False
        for i in range(len(block)):
            if (block[i] != data[i]):
                error = True
                print("ERROR: 0x%X, 0x%X, 0x%X!!!" %
                      ((addr + i), block[i], data[i]))
        if error:
            print("TEST FAILED")
        else:
            print("TEST PASSED")

        print("\n\n------ TEST RESET ------")
        target.reset()
        sleep(0.1)
        target.halt()

        for i in range(5):
            target.step()
            print("pc: 0x%X" % target.read_core_register('pc'))

        print("\n\n------ TEST PROGRAM/ERASE PAGE ------")
        # Fill 3 pages with 0x55
        page_size = flash.get_page_info(addr_flash).size
        fill = [0x55] * page_size
        for i in range(0, 3):
            address = addr_flash + page_size * i
            # Test only supports a location with 3 aligned
            # pages of the same size
            current_page_size = flash.get_page_info(addr_flash).size
            assert page_size == current_page_size
            assert address % current_page_size == 0

            flash.init(flash.Operation.ERASE)
            flash.erase_page(address)
            flash.uninit()

            flash.init(flash.Operation.PROGRAM)
            flash.program_page(address, fill)
            flash.uninit()
        # Erase the middle page
        flash.init(flash.Operation.ERASE)
        flash.erase_page(addr_flash + page_size)
        flash.cleanup()
        # Verify the 1st and 3rd page were not erased, and that the 2nd page is fully erased
        data = target.read_memory_block8(addr_flash, page_size * 3)
        expected = fill + [0xFF] * page_size + fill
        if data == expected:
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n----- FLASH NEW BINARY -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)

        target.reset()
예제 #2
0
def cortex_test(board_id):
    with ConnectHelper.session_with_chosen_probe(
            board_id=board_id, **get_session_options()) as session:
        board = session.board
        target_type = board.target_type

        binary_file = os.path.join(parentdir, 'binaries', board.test_binary)

        test_params = get_target_test_params(session)
        test_clock = test_params['test_clock']
        addr_invalid = 0x3E000000  # Last 16MB of ARM SRAM region - typically empty
        expect_invalid_access_to_fail = test_params['error_on_invalid_access']

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_first_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start

        target = board.target
        probe = session.probe

        probe.set_clock(test_clock)

        test_pass_count = 0
        test_count = 0
        result = CortexTestResult()

        debugContext = target.get_target_context()
        gdbFacade = GDBDebugContextFacade(debugContext)

        print("\n\n----- FLASH NEW BINARY BEFORE TEST -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)
        # Let the target run for a bit so it
        # can initialize the watchdog if it needs to
        target.resume()
        sleep(0.2)
        target.halt()

        print("PROGRAMMING COMPLETE")

        print("\n\n----- TESTING CORTEX-M PERFORMANCE -----")
        test_time = test_function(session, gdbFacade.get_t_response)
        result.times["get_t_response"] = test_time
        print("Function get_t_response time: %f" % test_time)

        # Step
        test_time = test_function(session, target.step)
        result.times["step"] = test_time
        print("Function step time: %f" % test_time)

        # Breakpoint
        def set_remove_breakpoint():
            target.set_breakpoint(0)
            target.remove_breakpoint(0)

        test_time = test_function(session, set_remove_breakpoint)
        result.times["bp_add_remove"] = test_time
        print("Add and remove breakpoint: %f" % test_time)

        # get_register_context
        test_time = test_function(session, gdbFacade.get_register_context)
        result.times["get_reg_context"] = test_time
        print("Function get_register_context: %f" % test_time)

        # set_register_context
        context = gdbFacade.get_register_context()

        def set_register_context():
            gdbFacade.set_register_context(context)

        test_time = test_function(session, set_register_context)
        result.times["set_reg_context"] = test_time
        print("Function set_register_context: %f" % test_time)

        # Run / Halt
        def run_halt():
            target.resume()
            target.halt()

        test_time = test_function(session, run_halt)
        result.times["run_halt"] = test_time
        print("Resume and halt: %f" % test_time)

        # GDB stepping
        def simulate_step():
            target.step()
            gdbFacade.get_t_response()
            target.set_breakpoint(0)
            target.resume()
            target.halt()
            gdbFacade.get_t_response()
            target.remove_breakpoint(0)

        test_time = test_function(session, simulate_step)
        result.times["gdb_step"] = test_time
        print("Simulated GDB step: %f" % test_time)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")

        print("\n\n------ Testing Reset Types ------")

        def reset_methods(fnc):
            print("Hardware reset")
            fnc(reset_type=Target.ResetType.HW)
            print("Hardware reset (default=HW)")
            target.selected_core.default_reset_type = Target.ResetType.HW
            fnc(reset_type=None)
            print("Software reset (default=SYSRESETREQ)")
            target.selected_core.default_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=None)
            print("Software reset (default=VECTRESET)")
            target.selected_core.default_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=None)
            print("Software reset (default=emulated)")
            target.selected_core.default_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=None)

            print("(Default) Software reset (SYSRESETREQ)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (VECTRESET)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (emulated)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=Target.ResetType.SW)

            print("Software reset (option=default)")
            target.selected_core.default_reset_type = Target.ResetType.SW
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            session.options['reset_type'] = 'default'
            fnc(reset_type=None)
            print("Software reset (option=hw)")
            session.options['reset_type'] = 'hw'
            fnc(reset_type=None)
            print("Software reset (option=sw)")
            session.options['reset_type'] = 'sw'
            fnc(reset_type=None)
            print("Software reset (option=sw_sysresetreq)")
            session.options['reset_type'] = 'sw_sysresetreq'
            fnc(reset_type=None)
            print("Software reset (option=sw_vectreset)")
            session.options['reset_type'] = 'sw_vectreset'
            fnc(reset_type=None)
            print("Software reset (option=sw_emulated)")
            session.options['reset_type'] = 'sw_emulated'
            fnc(reset_type=None)

        reset_methods(target.reset)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")

        print("\n\n------ Testing Reset Halt ------")
        reset_methods(target.reset_and_halt)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")

        print("\n\n------ Testing Register Read/Write ------")
        print("Reading r0")
        val = target.read_core_register('r0')
        origR0 = val
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == rawVal:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Writing r0")
        target.write_core_register('r0', 0x12345678)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x12345678 and rawVal == 0x12345678:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Raw writing r0")
        target.write_core_register_raw('r0', 0x87654321)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x87654321 and rawVal == 0x87654321:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Read/write r0, r1, r2, r3")
        origRegs = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], [1, 2, 3, 4])
        vals = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        passed = vals[0] == 1 and vals[1] == 2 and vals[2] == 3 and vals[3] == 4
        test_count += 1
        if passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        # Restore regs
        origRegs[0] = origR0
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], origRegs)

        if target.selected_core.has_fpu:
            print("Reading s0")
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            origRawS0 = rawVal
            passed = isinstance(val, float) and isinstance(rawVal, int) \
                        and float32_to_u32(val) == rawVal
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED")

            print("Writing s0")
            target.write_core_register('s0', math.pi)
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            passed = float_compare(val, math.pi) and float_compare(
                u32_to_float32(rawVal), math.pi)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f, 0x%08x->%f)" %
                      (val, math.pi, rawVal, u32_to_float32(rawVal)))

            print("Raw writing s0")
            x = float32_to_u32(32.768)
            target.write_core_register_raw('s0', x)
            val = target.read_core_register('s0')
            passed = float_compare(val, 32.768)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f)" % (val, 32.768))

            print("Read/write s0, s1")
            _1p1 = float32_to_u32(1.1)
            _2p2 = float32_to_u32(2.2)
            origRegs = target.read_core_registers_raw(['s0', 's1'])
            target.write_core_registers_raw(['s0', 's1'], [_1p1, _2p2])
            vals = target.read_core_registers_raw(['s0', 's1'])
            s0 = target.read_core_register('s0')
            s1 = target.read_core_register('s1')
            passed = vals[0] == _1p1 and float_compare(s0, 1.1) \
                        and vals[1] == _2p2 and float_compare(s1, 2.2)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (0x%08x==0x%08x, %f==%f, 0x%08x==0x%08x, %f==%f)" \
                    % (vals[0], _1p1, s0, 1.1, vals[1], _2p2, s1, 2.2))

            # Restore s0
            origRegs[0] = origRawS0
            target.write_core_registers_raw(['s0', 's1'], origRegs)

        print("\n\n------ Testing Invalid Memory Access Recovery ------")
        memory_access_pass = True
        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" %
                  addr_invalid)
            target.read_memory_block8(addr_invalid, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" %
                  (addr_invalid + 1))
            target.read_memory_block8(addr_invalid + 1, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" %
                  (len(data), addr_invalid))
            target.write_memory_block8(addr_invalid, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" %
                  (len(data), addr_invalid + 1))
            target.write_memory_block8(addr_invalid + 1, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr))
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        if same(data, block):
            print("  Aligned access pass")
        else:
            print("  Memory read does not match memory written")
            memory_access_pass = False

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr + 1))
        target.write_memory_block8(addr + 1, data)
        block = target.read_memory_block8(addr + 1, size)
        if same(data, block):
            print("  Unaligned access pass")
        else:
            print("  Unaligned memory read does not match memory written")
            memory_access_pass = False

        test_count += 1
        if memory_access_pass:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n------ Testing Software Breakpoints ------")
        test_passed = True
        orig8x2 = target.read_memory_block8(addr, 2)
        orig8 = target.read8(addr)
        orig16 = target.read16(addr & ~1)
        orig32 = target.read32(addr & ~3)
        origAligned32 = target.read_memory_block32(addr & ~3, 1)

        def test_filters():
            test_passed = True
            filtered = target.read_memory_block8(addr, 2)
            if same(orig8x2, filtered):
                print("2 byte unaligned passed")
            else:
                print("2 byte unaligned failed (read %x-%x, expected %x-%x)" %
                      (filtered[0], filtered[1], orig8x2[0], orig8x2[1]))
                test_passed = False

            for now in (True, False):
                filtered = target.read8(addr, now)
                if not now:
                    filtered = filtered()
                if filtered == orig8:
                    print("8-bit passed [now=%s]" % now)
                else:
                    print("8-bit failed [now=%s] (read %x, expected %x)" %
                          (now, filtered, orig8))
                    test_passed = False

                filtered = target.read16(addr & ~1, now)
                if not now:
                    filtered = filtered()
                if filtered == orig16:
                    print("16-bit passed [now=%s]" % now)
                else:
                    print("16-bit failed [now=%s] (read %x, expected %x)" %
                          (now, filtered, orig16))
                    test_passed = False

                filtered = target.read32(addr & ~3, now)
                if not now:
                    filtered = filtered()
                if filtered == orig32:
                    print("32-bit passed [now=%s]" % now)
                else:
                    print("32-bit failed [now=%s] (read %x, expected %x)" %
                          (now, filtered, orig32))
                    test_passed = False

            filtered = target.read_memory_block32(addr & ~3, 1)
            if same(filtered, origAligned32):
                print("32-bit aligned passed")
            else:
                print("32-bit aligned failed (read %x, expected %x)" %
                      (filtered[0], origAligned32[0]))
                test_passed = False
            return test_passed

        print("Installed software breakpoint at 0x%08x" % addr)
        target.set_breakpoint(addr, Target.BREAKPOINT_SW)
        test_passed = test_filters() and test_passed

        print("Removed software breakpoint")
        target.remove_breakpoint(addr)
        test_passed = test_filters() and test_passed

        test_count += 1
        if test_passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        target.reset()

        result.passed = test_count == test_pass_count
        return result
예제 #3
0
 def test_float32beToU32be(self):
     assert float32_to_u32(5.690456613903524e-28) == 0x012345678
예제 #4
0
파일: cortex_test.py 프로젝트: flit/pyOCD
def cortex_test(board_id):
    with ConnectHelper.session_with_chosen_probe(unique_id=board_id, **get_session_options()) as session:
        board = session.board
        target_type = board.target_type

        binary_file = os.path.join(parentdir, 'binaries', board.test_binary)

        test_params = get_target_test_params(session)
        test_clock = test_params['test_clock']
        addr_invalid = 0x3E000000 # Last 16MB of ARM SRAM region - typically empty
        expect_invalid_access_to_fail = test_params['error_on_invalid_access']

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_first_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start

        target = board.target
        probe = session.probe

        probe.set_clock(test_clock)

        test_pass_count = 0
        test_count = 0
        result = CortexTestResult()

        debugContext = target.get_target_context()
        gdbFacade = GDBDebugContextFacade(debugContext)

        print("\n\n----- FLASH NEW BINARY BEFORE TEST -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)
        # Let the target run for a bit so it
        # can initialize the watchdog if it needs to
        target.resume()
        sleep(0.2)
        target.halt()

        print("PROGRAMMING COMPLETE")


        print("\n\n----- TESTING CORTEX-M PERFORMANCE -----")
        test_time = test_function(session, gdbFacade.get_t_response)
        result.times["get_t_response"] = test_time
        print("Function get_t_response time: %f" % test_time)

        # Step
        test_time = test_function(session, target.step)
        result.times["step"] = test_time
        print("Function step time: %f" % test_time)

        # Breakpoint
        def set_remove_breakpoint():
            target.set_breakpoint(0)
            target.remove_breakpoint(0)
        test_time = test_function(session, set_remove_breakpoint)
        result.times["bp_add_remove"] = test_time
        print("Add and remove breakpoint: %f" % test_time)

        # get_register_context
        test_time = test_function(session, gdbFacade.get_register_context)
        result.times["get_reg_context"] = test_time
        print("Function get_register_context: %f" % test_time)

        # set_register_context
        context = gdbFacade.get_register_context()
        def set_register_context():
            gdbFacade.set_register_context(context)
        test_time = test_function(session, set_register_context)
        result.times["set_reg_context"] = test_time
        print("Function set_register_context: %f" % test_time)

        # Run / Halt
        def run_halt():
            target.resume()
            target.halt()
        test_time = test_function(session, run_halt)
        result.times["run_halt"] = test_time
        print("Resume and halt: %f" % test_time)

        # GDB stepping
        def simulate_step():
            target.step()
            gdbFacade.get_t_response()
            target.set_breakpoint(0)
            target.resume()
            target.halt()
            gdbFacade.get_t_response()
            target.remove_breakpoint(0)
        test_time = test_function(session, simulate_step)
        result.times["gdb_step"] = test_time
        print("Simulated GDB step: %f" % test_time)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")

        print("\n\n------ Testing Reset Types ------")
        def reset_methods(fnc):
            print("Hardware reset")
            fnc(reset_type=Target.ResetType.HW)
            print("Hardware reset (default=HW)")
            target.selected_core.default_reset_type = Target.ResetType.HW
            fnc(reset_type=None)
            print("Software reset (default=SYSRESETREQ)")
            target.selected_core.default_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=None)
            print("Software reset (default=VECTRESET)")
            target.selected_core.default_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=None)
            print("Software reset (default=emulated)")
            target.selected_core.default_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=None)
            
            print("(Default) Software reset (SYSRESETREQ)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (VECTRESET)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (emulated)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=Target.ResetType.SW)
            
            print("Software reset (option=default)")
            target.selected_core.default_reset_type = Target.ResetType.SW
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            session.options['reset_type'] = 'default'
            fnc(reset_type=None)
            print("Software reset (option=hw)")
            session.options['reset_type'] = 'hw'
            fnc(reset_type=None)
            print("Software reset (option=sw)")
            session.options['reset_type'] = 'sw'
            fnc(reset_type=None)
            print("Software reset (option=sw_sysresetreq)")
            session.options['reset_type'] = 'sw_sysresetreq'
            fnc(reset_type=None)
            print("Software reset (option=sw_vectreset)")
            session.options['reset_type'] = 'sw_vectreset'
            fnc(reset_type=None)
            print("Software reset (option=sw_emulated)")
            session.options['reset_type'] = 'sw_emulated'
            fnc(reset_type=None)

        reset_methods(target.reset)
        
        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")


        print("\n\n------ Testing Reset Halt ------")
        reset_methods(target.reset_and_halt)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")


        print("\n\n------ Testing Register Read/Write ------")
        print("Reading r0")
        val = target.read_core_register('r0')
        origR0 = val
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == rawVal:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Writing r0")
        target.write_core_register('r0', 0x12345678)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x12345678 and rawVal == 0x12345678:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Raw writing r0")
        target.write_core_register_raw('r0', 0x87654321)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x87654321 and rawVal == 0x87654321:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Read/write r0, r1, r2, r3")
        origRegs = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], [1, 2, 3, 4])
        vals = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        passed = vals[0] == 1 and vals[1] == 2 and vals[2] == 3 and vals[3] == 4
        test_count += 1
        if passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")
            
        # Restore regs
        origRegs[0] = origR0
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], origRegs)

        if target.selected_core.has_fpu:
            print("Reading s0")
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            origRawS0 = rawVal
            passed = isinstance(val, float) and isinstance(rawVal, int) \
                        and float32_to_u32(val) == rawVal
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED")

            print("Writing s0")
            target.write_core_register('s0', math.pi)
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            passed = float_compare(val, math.pi) and float_compare(u32_to_float32(rawVal), math.pi)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f, 0x%08x->%f)" % (val, math.pi, rawVal, u32_to_float32(rawVal)))

            print("Raw writing s0")
            x = float32_to_u32(32.768)
            target.write_core_register_raw('s0', x)
            val = target.read_core_register('s0')
            passed = float_compare(val, 32.768)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f)" % (val, 32.768))

            print("Read/write s0, s1")
            _1p1 = float32_to_u32(1.1)
            _2p2 = float32_to_u32(2.2)
            origRegs = target.read_core_registers_raw(['s0', 's1'])
            target.write_core_registers_raw(['s0', 's1'], [_1p1, _2p2])
            vals = target.read_core_registers_raw(['s0', 's1'])
            s0 = target.read_core_register('s0')
            s1 = target.read_core_register('s1')
            passed = vals[0] == _1p1 and float_compare(s0, 1.1) \
                        and vals[1] == _2p2 and float_compare(s1, 2.2)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (0x%08x==0x%08x, %f==%f, 0x%08x==0x%08x, %f==%f)" \
                    % (vals[0], _1p1, s0, 1.1, vals[1], _2p2, s1, 2.2))
            
            # Restore s0
            origRegs[0] = origRawS0
            target.write_core_registers_raw(['s0', 's1'], origRegs)
        

        print("\n\n------ Testing Invalid Memory Access Recovery ------")
        memory_access_pass = True
        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" % addr_invalid)
            target.read_memory_block8(addr_invalid, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" % (addr_invalid + 1))
            target.read_memory_block8(addr_invalid + 1, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" % (len(data), addr_invalid))
            target.write_memory_block8(addr_invalid, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" % (len(data), addr_invalid + 1))
            target.write_memory_block8(addr_invalid + 1, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr))
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        if same(data, block):
            print("  Aligned access pass")
        else:
            print("  Memory read does not match memory written")
            memory_access_pass = False

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr + 1))
        target.write_memory_block8(addr + 1, data)
        block = target.read_memory_block8(addr + 1, size)
        if same(data, block):
            print("  Unaligned access pass")
        else:
            print("  Unaligned memory read does not match memory written")
            memory_access_pass = False

        test_count += 1
        if memory_access_pass:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n------ Testing Software Breakpoints ------")
        test_passed = True
        orig8x2 = target.read_memory_block8(addr, 2)
        orig8 = target.read8(addr)
        orig16 = target.read16(addr & ~1)
        orig32 = target.read32(addr & ~3)
        origAligned32 = target.read_memory_block32(addr & ~3, 1)

        def test_filters():
            test_passed = True
            filtered = target.read_memory_block8(addr, 2)
            if same(orig8x2, filtered):
                print("2 byte unaligned passed")
            else:
                print("2 byte unaligned failed (read %x-%x, expected %x-%x)" % (filtered[0], filtered[1], orig8x2[0], orig8x2[1]))
                test_passed = False

            for now in (True, False):
                filtered = target.read8(addr, now)
                if not now:
                    filtered = filtered()
                if filtered == orig8:
                    print("8-bit passed [now=%s]" % now)
                else:
                    print("8-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig8))
                    test_passed = False

                filtered = target.read16(addr & ~1, now)
                if not now:
                    filtered = filtered()
                if filtered == orig16:
                    print("16-bit passed [now=%s]" % now)
                else:
                    print("16-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig16))
                    test_passed = False

                filtered = target.read32(addr & ~3, now)
                if not now:
                    filtered = filtered()
                if filtered == orig32:
                    print("32-bit passed [now=%s]" % now)
                else:
                    print("32-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig32))
                    test_passed = False

            filtered = target.read_memory_block32(addr & ~3, 1)
            if same(filtered, origAligned32):
                print("32-bit aligned passed")
            else:
                print("32-bit aligned failed (read %x, expected %x)" % (filtered[0], origAligned32[0]))
                test_passed = False
            return test_passed

        print("Installed software breakpoint at 0x%08x" % addr)
        target.set_breakpoint(addr, Target.BREAKPOINT_SW)
        test_passed = test_filters() and test_passed

        print("Removed software breakpoint")
        target.remove_breakpoint(addr)
        test_passed = test_filters() and test_passed

        test_count += 1
        if test_passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        target.reset()

        result.passed = test_count == test_pass_count
        return result
예제 #5
0
 def test_float32beToU32be(self):
     assert float32_to_u32(5.690456613903524e-28) == 0x012345678
예제 #6
0
def basic_test(board_id, file):
    with ConnectHelper.session_with_chosen_probe(unique_id=board_id, **get_session_options()) as session:
        board = session.board
        addr = 0
        size = 0
        f = None
        binary_file = "l1_"

        if file is None:
            binary_file = os.path.join(parentdir, 'binaries', board.test_binary)
        else:
            binary_file = file

        print("binary file: %s" % binary_file)

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_first_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start
        addr_flash = rom_region.start + rom_region.length // 2

        target = board.target
        flash = rom_region.flash

        print("\n\n------ GET Unique ID ------")
        print("Unique ID: %s" % board.unique_id)

        print("\n\n------ TEST READ / WRITE CORE REGISTER ------")
        pc = target.read_core_register('pc')
        print("initial pc: 0x%X" % target.read_core_register('pc'))
        # write in pc dummy value
        target.write_core_register('pc', 0x3D82)
        print("now pc: 0x%X" % target.read_core_register('pc'))
        # write initial pc value
        target.write_core_register('pc', pc)
        print("initial pc value rewritten: 0x%X" % target.read_core_register('pc'))

        msp = target.read_core_register('msp')
        psp = target.read_core_register('psp')
        print("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))

        control = target.read_core_register('control')
        faultmask = target.read_core_register('faultmask')
        basepri = target.read_core_register('basepri')
        primask = target.read_core_register('primask')
        print("CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x" % (control, faultmask, basepri, primask))

        target.write_core_register('primask', 1)
        newPrimask = target.read_core_register('primask')
        print("New PRIMASK = 0x%02x" % newPrimask)
        target.write_core_register('primask', primask)
        newPrimask = target.read_core_register('primask')
        print("Restored PRIMASK = 0x%02x" % newPrimask)

        if target.has_fpu:
            s0 = target.read_core_register('s0')
            print("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
            target.write_core_register('s0', math.pi)
            newS0 = target.read_core_register('s0')
            print("New S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
            target.write_core_register('s0', s0)
            newS0 = target.read_core_register('s0')
            print("Restored S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))


        print("\n\n------ TEST HALT / RESUME ------")

        print("resume")
        target.resume()
        sleep(0.2)

        print("halt")
        target.halt()
        print("HALT: pc: 0x%X" % target.read_core_register('pc'))
        sleep(0.2)


        print("\n\n------ TEST STEP ------")

        print("reset and halt")
        target.reset_stop_on_reset()
        currentPC = target.read_core_register('pc')
        print("HALT: pc: 0x%X" % currentPC)
        sleep(0.2)

        for i in range(4):
            print("step")
            target.step()
            newPC = target.read_core_register('pc')
            print("STEP: pc: 0x%X" % newPC)
            currentPC = newPC
            sleep(0.2)


        print("\n\n------ TEST READ / WRITE MEMORY ------")
        target.halt()
        print("READ32/WRITE32")
        val = randrange(0, 0xffffffff)
        print("write32 0x%X at 0x%X" % (val, addr))
        target.write_memory(addr, val)
        res = target.read_memory(addr)
        print("read32 at 0x%X: 0x%X" % (addr, res))
        if res != val:
            print("ERROR in READ/WRITE 32")

        print("\nREAD16/WRITE16")
        val = randrange(0, 0xffff)
        print("write16 0x%X at 0x%X" % (val, addr + 2))
        target.write_memory(addr + 2, val, 16)
        res = target.read_memory(addr + 2, 16)
        print("read16 at 0x%X: 0x%X" % (addr + 2, res))
        if res != val:
            print("ERROR in READ/WRITE 16")

        print("\nREAD8/WRITE8")
        val = randrange(0, 0xff)
        print("write8 0x%X at 0x%X" % (val, addr + 1))
        target.write_memory(addr + 1, val, 8)
        res = target.read_memory(addr + 1, 8)
        print("read8 at 0x%X: 0x%X" % (addr + 1, res))
        if res != val:
            print("ERROR in READ/WRITE 8")


        print("\n\n------ TEST READ / WRITE MEMORY BLOCK ------")
        data = [randrange(1, 50) for x in range(size)]
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        error = False
        for i in range(len(block)):
            if (block[i] != data[i]):
                error = True
                print("ERROR: 0x%X, 0x%X, 0x%X!!!" % ((addr + i), block[i], data[i]))
        if error:
            print("TEST FAILED")
        else:
            print("TEST PASSED")


        print("\n\n------ TEST RESET ------")
        target.reset()
        sleep(0.1)
        target.halt()

        for i in range(5):
            target.step()
            print("pc: 0x%X" % target.read_core_register('pc'))

        print("\n\n------ TEST PROGRAM/ERASE PAGE ------")
        # Fill 3 pages with 0x55
        page_size = flash.get_page_info(addr_flash).size
        fill = [0x55] * page_size
        for i in range(0, 3):
            address = addr_flash + page_size * i
            # Test only supports a location with 3 aligned
            # pages of the same size
            current_page_size = flash.get_page_info(addr_flash).size
            assert page_size == current_page_size
            assert address % current_page_size == 0

            flash.init(flash.Operation.ERASE)
            flash.erase_page(address)
            flash.uninit()

            flash.init(flash.Operation.PROGRAM)
            flash.program_page(address, fill)
            flash.uninit()
        # Erase the middle page
        flash.init(flash.Operation.ERASE)
        flash.erase_page(addr_flash + page_size)
        flash.cleanup()
        # Verify the 1st and 3rd page were not erased, and that the 2nd page is fully erased
        data = target.read_memory_block8(addr_flash, page_size * 3)
        expected = fill + [0xFF] * page_size + fill
        if data == expected:
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n----- FLASH NEW BINARY -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)

        target.reset()
예제 #7
0
def test_hid(workspace, parent_test):
    test_info = parent_test.create_subtest("HID test")
    board = workspace.board
    with ConnectHelper.session_with_chosen_probe(
            unique_id=board.get_unique_id()) as session:
        mbed_board = session.board
        target = mbed_board.target
        binary_file = workspace.target.bin_path

        ram_region = target.memory_map.get_default_region_of_type(
            MemoryType.RAM)
        rom_region = target.memory_map.get_boot_memory()

        addr = ram_region.start + 4
        size = 0x502
        addr_bin = rom_region.start
        addr_flash = rom_region.start + rom_region.length // 2

        flash = rom_region.flash

        test_info.info("\r\n\r\n----- FLASH NEW BINARY -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)

        test_info.info("\r\n\r\n------ GET Unique ID ------")
        test_info.info("Unique ID: %s" % mbed_board.unique_id)

        test_info.info("\r\n\r\n------ TEST READ / WRITE CORE REGISTER ------")
        pc = target.read_core_register('pc')
        test_info.info("initial pc: 0x%X" % target.read_core_register('pc'))
        # write in pc dummy value
        target.write_core_register('pc', 0x3D82)
        test_info.info("now pc: 0x%X" % target.read_core_register('pc'))
        # write initial pc value
        target.write_core_register('pc', pc)
        test_info.info("initial pc value rewritten: 0x%X" %
                       target.read_core_register('pc'))

        msp = target.read_core_register('msp')
        psp = target.read_core_register('psp')
        test_info.info("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))

        if 'faultmask' in target.core_registers.by_name:
            control = target.read_core_register('control')
            faultmask = target.read_core_register('faultmask')
            basepri = target.read_core_register('basepri')
            primask = target.read_core_register('primask')
            test_info.info(
                "CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x"
                % (control, faultmask, basepri, primask))
        else:
            control = target.read_core_register('control')
            primask = target.read_core_register('primask')
            test_info.info("CONTROL = 0x%02x; PRIMASK = 0x%02x" %
                           (control, primask))

        target.write_core_register('primask', 1)
        newPrimask = target.read_core_register('primask')
        test_info.info("New PRIMASK = 0x%02x" % newPrimask)
        target.write_core_register('primask', primask)
        newPrimask = target.read_core_register('primask')
        test_info.info("Restored PRIMASK = 0x%02x" % newPrimask)

        if target.selected_core.has_fpu:
            s0 = target.read_core_register('s0')
            test_info.info("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
            target.write_core_register('s0', math.pi)
            newS0 = target.read_core_register('s0')
            test_info.info("New S0 = %g (0x%08x)" %
                           (newS0, float32_to_u32(newS0)))
            target.write_core_register('s0', s0)
            newS0 = target.read_core_register('s0')
            test_info.info("Restored S0 = %g (0x%08x)" %
                           (newS0, float32_to_u32(newS0)))

        test_info.info("\r\n\r\n------ TEST HALT / RESUME ------")

        test_info.info("resume")
        target.resume()
        sleep(0.2)

        test_info.info("halt")
        target.halt()
        test_info.info("HALT: pc: 0x%X" % target.read_core_register('pc'))
        sleep(0.2)

        test_info.info("\r\n\r\n------ TEST STEP ------")

        test_info.info("reset and halt")
        target.reset_and_halt()
        currentPC = target.read_core_register('pc')
        test_info.info("HALT: pc: 0x%X" % currentPC)
        sleep(0.2)

        for i in range(4):
            test_info.info("step")
            target.step()
            newPC = target.read_core_register('pc')
            test_info.info("STEP: pc: 0x%X" % newPC)
            currentPC = newPC
            sleep(0.2)

        test_info.info("\r\n\r\n------ TEST READ / WRITE MEMORY ------")
        target.halt()
        test_info.info("READ32/WRITE32")
        val = randrange(0, 0xffffffff)
        test_info.info("write32 0x%X at 0x%X" % (val, addr))
        target.write32(addr, val)
        res = target.read32(addr)
        test_info.info("read32 at 0x%X: 0x%X" % (addr, res))
        if res != val:
            test_info.failure("ERROR in READ/WRITE 32")

        test_info.info("\r\nREAD16/WRITE16")
        val = randrange(0, 0xffff)
        test_info.info("write16 0x%X at 0x%X" % (val, addr + 2))
        target.write16(addr + 2, val)
        res = target.read16(addr + 2)
        test_info.info("read16 at 0x%X: 0x%X" % (addr + 2, res))
        if res != val:
            test_info.failure("ERROR in READ/WRITE 16")

        test_info.info("\r\nREAD8/WRITE8")
        val = randrange(0, 0xff)
        test_info.info("write8 0x%X at 0x%X" % (val, addr + 1))
        target.write8(addr + 1, val)
        res = target.read8(addr + 1)
        test_info.info("read8 at 0x%X: 0x%X" % (addr + 1, res))
        if res != val:
            test_info.failure("ERROR in READ/WRITE 8")

        test_info.info("\r\n\r\n------ TEST READ / WRITE MEMORY BLOCK ------")
        data = [randrange(1, 50) for _ in range(size)]
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        error = False
        for i in range(len(block)):
            if (block[i] != data[i]):
                error = True
                test_info.info("ERROR: 0x%X, 0x%X, 0x%X!!!" %
                               ((addr + i), block[i], data[i]))
        if error:
            test_info.failure("TEST FAILED")
        else:
            test_info.info("TEST PASSED")

        test_info.info("\r\n\r\n------ TEST RESET ------")
        target.reset()
        sleep(0.1)
        target.halt()

        for i in range(5):
            target.step()
            test_info.info("pc: 0x%X" % target.read_core_register('pc'))

        target.reset()
        test_info.info("HID test complete")
예제 #8
0
def cortex_test(board_id):
    with ConnectHelper.session_with_chosen_probe(unique_id=board_id, **get_session_options()) as session:
        board = session.board
        target_type = board.target_type

        binary_file = get_test_binary_path(board.test_binary)

        test_params = get_target_test_params(session)
        test_clock = test_params['test_clock']
        addr_invalid = 0x3E000000 # Last 16MB of ARM SRAM region - typically empty
        expect_invalid_access_to_fail = test_params['error_on_invalid_access']

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_default_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start

        target = board.target
        probe = session.probe

        probe.set_clock(test_clock)

        test_pass_count = 0
        test_count = 0
        result = CortexTestResult()

        debugContext = target.get_target_context()
        gdbFacade = GDBDebugContextFacade(debugContext)

        print("\n\n----- FLASH NEW BINARY BEFORE TEST -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)
        # Let the target run for a bit so it
        # can initialize the watchdog if it needs to
        target.resume()
        sleep(0.2)
        target.halt()

        print("PROGRAMMING COMPLETE")


        print("\n\n----- TESTING CORTEX-M PERFORMANCE -----")
        test_time = test_function(session, gdbFacade.get_t_response)
        result.times["get_t_response"] = test_time
        print("Function get_t_response time:    %f" % test_time)

        # Step
        test_time = test_function(session, target.step)
        result.times["step"] = test_time
        print("Function step time:              %f" % test_time)

        # Breakpoint
        def set_remove_breakpoint():
            target.set_breakpoint(0)
            target.remove_breakpoint(0)
        test_time = test_function(session, set_remove_breakpoint)
        result.times["bp_add_remove"] = test_time
        print("Add and remove breakpoint:       %f" % test_time)

        # get_register_context
        test_time = test_function(session, gdbFacade.get_register_context)
        result.times["get_reg_context"] = test_time
        print("Function get_register_context:   %f" % test_time)

        # set_register_context
        context = gdbFacade.get_register_context()
        def set_register_context():
            gdbFacade.set_register_context(context)
        test_time = test_function(session, set_register_context)
        result.times["set_reg_context"] = test_time
        print("Function set_register_context:   %f" % test_time)

        # Run / Halt
        def run_halt():
            target.resume()
            target.halt()
        test_time = test_function(session, run_halt)
        result.times["run_halt"] = test_time
        print("Resume and halt:                 %f" % test_time)

        # GDB stepping
        def simulate_step():
            target.step()
            gdbFacade.get_t_response()
            target.set_breakpoint(0)
            target.resume()
            target.halt()
            gdbFacade.get_t_response()
            target.remove_breakpoint(0)
        test_time = test_function(session, simulate_step)
        result.times["gdb_step"] = test_time
        print("Simulated GDB step:              %f" % test_time)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")

        print("\n\n------ Testing Reset Types ------")
        def reset_methods(fnc):
            print("Hardware reset")
            fnc(reset_type=Target.ResetType.HW)
            print("Hardware reset (default=HW)")
            target.selected_core.default_reset_type = Target.ResetType.HW
            fnc(reset_type=None)
            print("Software reset (default=SYSRESETREQ)")
            target.selected_core.default_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=None)
            print("Software reset (default=VECTRESET)")
            target.selected_core.default_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=None)
            print("Software reset (default=emulated)")
            target.selected_core.default_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=None)

            print("(Default) Software reset (SYSRESETREQ)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (VECTRESET)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_VECTRESET
            fnc(reset_type=Target.ResetType.SW)
            print("(Default) Software reset (emulated)")
            target.selected_core.default_software_reset_type = Target.ResetType.SW_EMULATED
            fnc(reset_type=Target.ResetType.SW)

            print("Software reset (option=default)")
            target.selected_core.default_reset_type = Target.ResetType.SW
            target.selected_core.default_software_reset_type = Target.ResetType.SW_SYSRESETREQ
            session.options['reset_type'] = 'default'
            fnc(reset_type=None)
            print("Software reset (option=hw)")
            session.options['reset_type'] = 'hw'
            fnc(reset_type=None)
            print("Software reset (option=sw)")
            session.options['reset_type'] = 'sw'
            fnc(reset_type=None)
            print("Software reset (option=sw_sysresetreq)")
            session.options['reset_type'] = 'sw_sysresetreq'
            fnc(reset_type=None)
            print("Software reset (option=sw_vectreset)")
            session.options['reset_type'] = 'sw_vectreset'
            fnc(reset_type=None)
            print("Software reset (option=sw_emulated)")
            session.options['reset_type'] = 'sw_emulated'
            fnc(reset_type=None)

        reset_methods(target.reset)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")


        print("\n\n------ Testing Reset Halt ------")
        reset_methods(target.reset_and_halt)

        # Test passes if there are no exceptions
        test_pass_count += 1
        test_count += 1
        print("TEST PASSED")


        print("\n\n------ Testing Register Read/Write ------")
        print("Reading r0")
        val = target.read_core_register('r0')
        origR0 = val
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == rawVal:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Writing r0")
        target.write_core_register('r0', 0x12345678)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x12345678 and rawVal == 0x12345678:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Raw writing r0")
        target.write_core_register_raw('r0', 0x87654321)
        val = target.read_core_register('r0')
        rawVal = target.read_core_register_raw('r0')
        test_count += 1
        if val == 0x87654321 and rawVal == 0x87654321:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Read/write r0, r1, r2, r3")
        origRegs = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], [1, 2, 3, 4])
        vals = target.read_core_registers_raw(['r0', 'r1', 'r2', 'r3'])
        passed = vals[0] == 1 and vals[1] == 2 and vals[2] == 3 and vals[3] == 4
        test_count += 1
        if passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        # Restore regs
        origRegs[0] = origR0
        target.write_core_registers_raw(['r0', 'r1', 'r2', 'r3'], origRegs)

        print("Verify exception is raised while core is running")
        target.resume()
        try:
            val = target.read_core_register('r0')
        except exceptions.CoreRegisterAccessError:
            passed = True
        else:
            passed = False
        test_count += 1
        if passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("Verify failure to write core register while running raises exception")
        try:
            target.write_core_register('r0', 0x1234)
        except exceptions.CoreRegisterAccessError:
            passed = True
        else:
            passed = False
        test_count += 1
        if passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        # Resume execution.
        target.halt()

        if target.selected_core.has_fpu:
            print("Reading s0")
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            origRawS0 = rawVal
            passed = isinstance(val, float) and isinstance(rawVal, int) \
                        and float32_to_u32(val) == rawVal
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED")

            print("Writing s0")
            target.write_core_register('s0', math.pi)
            val = target.read_core_register('s0')
            rawVal = target.read_core_register_raw('s0')
            passed = float_compare(val, math.pi) and float_compare(u32_to_float32(rawVal), math.pi)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f, 0x%08x->%f)" % (val, math.pi, rawVal, u32_to_float32(rawVal)))

            print("Raw writing s0")
            x = float32_to_u32(32.768)
            target.write_core_register_raw('s0', x)
            val = target.read_core_register('s0')
            passed = float_compare(val, 32.768)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (%f==%f)" % (val, 32.768))

            print("Read/write s0, s1")
            _1p1 = float32_to_u32(1.1)
            _2p2 = float32_to_u32(2.2)
            origRegs = target.read_core_registers_raw(['s0', 's1'])
            target.write_core_registers_raw(['s0', 's1'], [_1p1, _2p2])
            vals = target.read_core_registers_raw(['s0', 's1'])
            s0 = target.read_core_register('s0')
            s1 = target.read_core_register('s1')
            passed = vals[0] == _1p1 and float_compare(s0, 1.1) \
                        and vals[1] == _2p2 and float_compare(s1, 2.2)
            test_count += 1
            if passed:
                test_pass_count += 1
                print("TEST PASSED")
            else:
                print("TEST FAILED (0x%08x==0x%08x, %f==%f, 0x%08x==0x%08x, %f==%f)" \
                    % (vals[0], _1p1, s0, 1.1, vals[1], _2p2, s1, 2.2))

            # Restore s0
            origRegs[0] = origRawS0
            target.write_core_registers_raw(['s0', 's1'], origRegs)

        print("Verify that all listed core registers can be accessed")

        def test_reg_rw(r, new_value: int, test_write: bool) -> bool:
            did_pass = True
            try:
                # Read original value.
                original_val = target.read_core_register_raw(r.name)

                if not test_write:
                    return did_pass

                # Make sure the new value changes.
                if new_value == original_val:
                    new_value = 0

                # Change the value.
                target.write_core_register_raw(r.name, new_value)
                read_val = target.read_core_register_raw(r.name)
                if read_val != new_value:
                    print(f"Failed to change value of register {r.name} to {new_value:#x}; read {read_val:#x}")
                    did_pass = False

                target.write_core_register_raw(r.name, original_val)
                read_val = target.read_core_register_raw(r.name)
                if read_val != original_val:
                    print(f"Failed to restore value of register {r.name} back to original {original_val:#x}; read {read_val:#x}")
                    did_pass = False
            except exceptions.CoreRegisterAccessError:
                did_pass = False
            return did_pass

        reg_count = 0
        passed_reg_count = 0
        for r in target.selected_core.core_registers.as_set:
            test_write = True

            # Decide on a new value, ensuring it changes and taking into account register specifics.
            r_mask = (1 << r.bitsize) - 1
            if 'sp' in r.name:
                r_mask &= ~0x3
            elif r.name == 'pc':
                r_mask &= ~0x1
            elif 'xpsr' in r.name:
                r_mask = 0xd0000000
            elif 'control' == r.name:
                # SPSEL is available on all cores.
                r_mask = 0x2
            elif r.name in ('primask', 'faultmask'):
                r_mask = 0x1
            elif r.name == 'basepri':
                r_mask = 0x80
            elif r.name == 'fpscr':
                # v7-M bits
                r_mask = 0xf7c0009f
            new_value = 0xdeadbeef & r_mask

            # Skip write tests on some regs:
            # - combined CFBP
            # - PSR variants not including XPSR
            # - all _NS and _S variants
            if ((r.name in ('cfbp',))
                    or (('psr' in r.name) and (r.name != 'xpsr'))
                    or ('_ns' in r.name) or ('_s' in r.name)
                    ):
                test_write = False

            reg_count += 1
            if test_reg_rw(r, new_value, test_write):
                passed_reg_count += 1

        test_count += 1
        if passed_reg_count == reg_count:
            test_pass_count += 1
            print("TEST PASSED (%i registers)" % reg_count)
        else:
            print("TEST FAILED (%i registers, %i failed)" % (reg_count, reg_count - passed_reg_count))

        print("\n\n------ Testing Invalid Memory Access Recovery ------")
        memory_access_pass = True
        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" % addr_invalid)
            target.read_memory_block8(addr_invalid, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        try:
            print("reading 0x1000 bytes at invalid address 0x%08x" % (addr_invalid + 1))
            target.read_memory_block8(addr_invalid + 1, 0x1000)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" % (len(data), addr_invalid))
            target.write_memory_block8(addr_invalid, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [0x00] * 0x1000
        try:
            print("writing 0x%08x bytes at invalid address 0x%08x" % (len(data), addr_invalid + 1))
            target.write_memory_block8(addr_invalid + 1, data)
            target.flush()
            # If no exception is thrown the tests fails except on nrf51 where invalid addresses read as 0
            if expect_invalid_access_to_fail:
                print("  failed to get expected fault!")
                memory_access_pass = False
            else:
                print("  no fault as expected")
        except exceptions.TransferFaultError as exc:
            print("  got expected error: " + str(exc))

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr))
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        if same(data, block):
            print("  Aligned access pass")
        else:
            print("  Memory read does not match memory written")
            memory_access_pass = False

        data = [randrange(0, 255) for x in range(size)]
        print("r/w 0x%08x bytes at 0x%08x" % (size, addr + 1))
        target.write_memory_block8(addr + 1, data)
        block = target.read_memory_block8(addr + 1, size)
        if same(data, block):
            print("  Unaligned access pass")
        else:
            print("  Unaligned memory read does not match memory written")
            memory_access_pass = False

        test_count += 1
        if memory_access_pass:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n------ Testing Software Breakpoints ------")
        test_passed = True
        orig8x2 = target.read_memory_block8(addr, 2)
        orig8 = target.read8(addr)
        orig16 = target.read16(addr & ~1)
        orig32 = target.read32(addr & ~3)
        origAligned32 = target.read_memory_block32(addr & ~3, 1)

        def test_filters():
            test_passed = True
            filtered = target.read_memory_block8(addr, 2)
            if same(orig8x2, filtered):
                print("2 byte unaligned passed")
            else:
                print("2 byte unaligned failed (read %x-%x, expected %x-%x)" % (filtered[0], filtered[1], orig8x2[0], orig8x2[1]))
                test_passed = False

            for now in (True, False):
                filtered = target.read8(addr, now)
                if not now:
                    filtered = filtered()
                if filtered == orig8:
                    print("8-bit passed [now=%s]" % now)
                else:
                    print("8-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig8))
                    test_passed = False

                filtered = target.read16(addr & ~1, now)
                if not now:
                    filtered = filtered()
                if filtered == orig16:
                    print("16-bit passed [now=%s]" % now)
                else:
                    print("16-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig16))
                    test_passed = False

                filtered = target.read32(addr & ~3, now)
                if not now:
                    filtered = filtered()
                if filtered == orig32:
                    print("32-bit passed [now=%s]" % now)
                else:
                    print("32-bit failed [now=%s] (read %x, expected %x)" % (now, filtered, orig32))
                    test_passed = False

            filtered = target.read_memory_block32(addr & ~3, 1)
            if same(filtered, origAligned32):
                print("32-bit aligned passed")
            else:
                print("32-bit aligned failed (read %x, expected %x)" % (filtered[0], origAligned32[0]))
                test_passed = False
            return test_passed

        print("Installed software breakpoint at 0x%08x" % addr)
        target.set_breakpoint(addr, Target.BreakpointType.SW)
        test_passed = test_filters() and test_passed

        print("Removed software breakpoint")
        target.remove_breakpoint(addr)
        test_passed = test_filters() and test_passed

        test_count += 1
        if test_passed:
            test_pass_count += 1
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\nTest Summary:")
        print("Pass count %i of %i tests" % (test_pass_count, test_count))
        if test_pass_count == test_count:
            print("CORTEX TEST PASSED")
        else:
            print("CORTEX TEST FAILED")

        target.reset()

        result.passed = test_count == test_pass_count
        return result
예제 #9
0
def basic_test(board_id, file):
    with ConnectHelper.session_with_chosen_probe(
            unique_id=board_id, **get_session_options()) as session:
        board = session.board
        addr = 0
        size = 0
        f = None
        binary_file = "l1_"

        if file is None:
            binary_file = get_test_binary_path(board.test_binary)
        else:
            binary_file = file

        print("binary file: %s" % binary_file)

        memory_map = board.target.get_memory_map()
        ram_region = memory_map.get_default_region_of_type(MemoryType.RAM)
        rom_region = memory_map.get_boot_memory()

        addr = ram_region.start
        size = 0x502
        addr_bin = rom_region.start

        target = board.target
        flash = rom_region.flash

        print("\n\n------ GET Unique ID ------")
        print("Unique ID: %s" % board.unique_id)

        print("\n\n------ TEST READ / WRITE CORE REGISTER ------")
        pc = target.read_core_register('pc')
        print("initial pc: 0x%X" % target.read_core_register('pc'))
        # write in pc dummy value
        target.write_core_register('pc', 0x3D82)
        print("now pc: 0x%X" % target.read_core_register('pc'))
        # write initial pc value
        target.write_core_register('pc', pc)
        print("initial pc value rewritten: 0x%X" %
              target.read_core_register('pc'))

        msp = target.read_core_register('msp')
        psp = target.read_core_register('psp')
        print("MSP = 0x%08x; PSP = 0x%08x" % (msp, psp))

        if 'faultmask' in target.core_registers.by_name:
            control = target.read_core_register('control')
            faultmask = target.read_core_register('faultmask')
            basepri = target.read_core_register('basepri')
            primask = target.read_core_register('primask')
            print(
                "CONTROL = 0x%02x; FAULTMASK = 0x%02x; BASEPRI = 0x%02x; PRIMASK = 0x%02x"
                % (control, faultmask, basepri, primask))
        else:
            control = target.read_core_register('control')
            primask = target.read_core_register('primask')
            print("CONTROL = 0x%02x; PRIMASK = 0x%02x" % (control, primask))

        target.write_core_register('primask', 1)
        newPrimask = target.read_core_register('primask')
        print("New PRIMASK = 0x%02x" % newPrimask)
        target.write_core_register('primask', primask)
        newPrimask = target.read_core_register('primask')
        print("Restored PRIMASK = 0x%02x" % newPrimask)

        if target.selected_core.has_fpu:
            s0 = target.read_core_register('s0')
            print("S0 = %g (0x%08x)" % (s0, float32_to_u32(s0)))
            target.write_core_register('s0', math.pi)
            newS0 = target.read_core_register('s0')
            print("New S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))
            target.write_core_register('s0', s0)
            newS0 = target.read_core_register('s0')
            print("Restored S0 = %g (0x%08x)" % (newS0, float32_to_u32(newS0)))

        print("\n\n------ TEST HALT / RESUME ------")

        print("resume")
        target.resume()
        sleep(0.2)

        print("halt")
        target.halt()
        print("HALT: pc: 0x%X" % target.read_core_register('pc'))
        sleep(0.2)

        print("\n\n------ TEST STEP ------")

        print("reset and halt")
        target.reset_and_halt()
        currentPC = target.read_core_register('pc')
        print("HALT: pc: 0x%X" % currentPC)
        sleep(0.2)

        for i in range(4):
            print("step")
            target.step()
            newPC = target.read_core_register('pc')
            print("STEP: pc: 0x%X" % newPC)
            sleep(0.2)

        print("\n\n------ TEST RANGE STEP ------")

        # Add some extra room before end of memory, and a second copy so there are instructions
        # after the final bkpt. Add 1 because region end is always odd.
        test_addr = ram_region.end + 1 - len(RANGE_STEP_CODE) * 2 - 32
        # Since the end address is inclusive, we need to exclude the last instruction.
        test_end_addr = test_addr + len(RANGE_STEP_CODE) - 2
        print("range start = %#010x; range_end = %#010x" %
              (test_addr, test_end_addr))
        # Load up some code into ram to test range step.
        target.write_memory_block8(test_addr, RANGE_STEP_CODE * 2)
        check_data = target.read_memory_block8(test_addr,
                                               len(RANGE_STEP_CODE) * 2)
        if not same(check_data, RANGE_STEP_CODE * 2):
            print("Failed to write range step test code to RAM")
        else:
            print("wrote range test step code to RAM successfully")

        target.write_core_register('pc', test_addr)
        currentPC = target.read_core_register('pc')
        print("start PC: 0x%X" % currentPC)
        target.step(start=test_addr, end=test_end_addr)
        newPC = target.read_core_register('pc')
        print("end PC: 0x%X" % newPC)

        # Now test again to ensure the bkpt stops it.
        target.write_core_register('pc', test_addr)
        currentPC = target.read_core_register('pc')
        print("start PC: 0x%X" % currentPC)
        target.step(start=test_addr, end=test_end_addr + 4)  # include bkpt
        newPC = target.read_core_register('pc')
        print("end PC: 0x%X" % newPC)
        halt_reason = target.get_halt_reason()
        print("halt reason: %s (should be BREAKPOINT)" % halt_reason.name)

        print("\n\n------ TEST READ / WRITE MEMORY ------")
        target.halt()
        print("READ32/WRITE32")
        val = randrange(0, 0xffffffff)
        print("write32 0x%X at 0x%X" % (val, addr))
        target.write_memory(addr, val)
        res = target.read_memory(addr)
        print("read32 at 0x%X: 0x%X" % (addr, res))
        if res != val:
            print("ERROR in READ/WRITE 32")

        print("\nREAD16/WRITE16")
        val = randrange(0, 0xffff)
        print("write16 0x%X at 0x%X" % (val, addr + 2))
        target.write_memory(addr + 2, val, 16)
        res = target.read_memory(addr + 2, 16)
        print("read16 at 0x%X: 0x%X" % (addr + 2, res))
        if res != val:
            print("ERROR in READ/WRITE 16")

        print("\nREAD8/WRITE8")
        val = randrange(0, 0xff)
        print("write8 0x%X at 0x%X" % (val, addr + 1))
        target.write_memory(addr + 1, val, 8)
        res = target.read_memory(addr + 1, 8)
        print("read8 at 0x%X: 0x%X" % (addr + 1, res))
        if res != val:
            print("ERROR in READ/WRITE 8")

        print("\n\n------ TEST READ / WRITE MEMORY BLOCK ------")
        data = [randrange(1, 50) for x in range(size)]
        target.write_memory_block8(addr, data)
        block = target.read_memory_block8(addr, size)
        error = False
        for i in range(len(block)):
            if (block[i] != data[i]):
                error = True
                print("ERROR: 0x%X, 0x%X, 0x%X!!!" %
                      ((addr + i), block[i], data[i]))
        if error:
            print("TEST FAILED")
        else:
            print("TEST PASSED")

        print("\n\n------ TEST RESET ------")
        target.reset()
        sleep(0.1)
        target.halt()

        for i in range(5):
            target.step()
            print("pc: 0x%X" % target.read_core_register('pc'))

        print("\n\n------ TEST PROGRAM/ERASE PAGE ------")
        # Fill 3 pages with 0x55
        sector_size = rom_region.sector_size
        page_size = rom_region.page_size
        sectors_to_test = min(rom_region.length // sector_size, 3)
        addr_flash = rom_region.start + rom_region.length - sector_size * sectors_to_test
        fill = [0x55] * page_size
        for i in range(0, sectors_to_test):
            address = addr_flash + sector_size * i
            # Test only supports a location with 3 aligned
            # pages of the same size
            current_page_size = flash.get_page_info(addr_flash).size
            assert page_size == current_page_size
            assert address % current_page_size == 0

            print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
            flash.init(flash.Operation.ERASE)
            flash.erase_sector(address)

            print("Verifying erased sector @ 0x%x (%d bytes)" %
                  (address, sector_size))
            data = target.read_memory_block8(address, sector_size)
            if data != [flash.region.erased_byte_value] * sector_size:
                print("FAILED to erase sector @ 0x%x (%d bytes)" %
                      (address, sector_size))
            else:
                print("Programming page @ 0x%x (%d bytes)" %
                      (address, page_size))
                flash.init(flash.Operation.PROGRAM)
                flash.program_page(address, fill)

                print("Verifying programmed page @ 0x%x (%d bytes)" %
                      (address, page_size))
                data = target.read_memory_block8(address, page_size)
                if data != fill:
                    print("FAILED to program page @ 0x%x (%d bytes)" %
                          (address, page_size))

        # Erase the middle sector
        if sectors_to_test > 1:
            address = addr_flash + sector_size
            print("Erasing sector @ 0x%x (%d bytes)" % (address, sector_size))
            flash.init(flash.Operation.ERASE)
            flash.erase_sector(address)
        flash.cleanup()

        print("Verifying erased sector @ 0x%x (%d bytes)" %
              (address, sector_size))
        data = target.read_memory_block8(address, sector_size)
        if data != [flash.region.erased_byte_value] * sector_size:
            print("FAILED to erase sector @ 0x%x (%d bytes)" %
                  (address, sector_size))

        # Re-verify the 1st and 3rd page were not erased, and that the 2nd page is fully erased
        did_pass = False
        for i in range(0, sectors_to_test):
            address = addr_flash + sector_size * i
            print("Verifying page @ 0x%x (%d bytes)" % (address, page_size))
            data = target.read_memory_block8(address, page_size)
            expected = ([flash.region.erased_byte_value] *
                        page_size) if (i == 1) else fill
            did_pass = (data == expected)
            if not did_pass:
                print("FAILED verify for page @ 0x%x (%d bytes)" %
                      (address, page_size))
                break
        if did_pass:
            print("TEST PASSED")
        else:
            print("TEST FAILED")

        print("\n\n----- FLASH NEW BINARY -----")
        FileProgrammer(session).program(binary_file, base_address=addr_bin)

        target.reset()