예제 #1
0
class TestLSCP(unittest.TestCase):
    def setUp(self):
        # Define data file and read X and y
        # Generate some data if the source data is missing
        this_directory = path.abspath(path.dirname(__file__))
        mat_file = 'cardio.mat'
        try:
            mat = loadmat(path.join(*[this_directory, 'data', mat_file]))

        except TypeError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        except IOError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        else:
            X = mat['X']
            y = mat['y'].ravel()
            X, y = check_X_y(X, y)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=42)

        self.detector_list = [LOF(), LOF()]
        self.clf = LSCP(self.detector_list)
        self.clf.fit(self.X_train)
        self.roc_floor = 0.6

    def test_parameters(self):
        assert (hasattr(self.clf, 'decision_scores_')
                and self.clf.decision_scores_ is not None)
        assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert (hasattr(self.clf, 'threshold_')
                and self.clf.threshold_ is not None)
        assert (hasattr(self.clf, '_mu') and self.clf._mu is not None)
        assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None)
        assert (hasattr(self.clf, 'detector_list')
                and self.clf.detector_list is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    def test_predict_rank(self):
        pred_socres = self.clf.decision_function(self.X_test)
        pred_ranks = self.clf._predict_rank(self.X_test)

        # assert the order is reserved
        assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
        assert_array_less(pred_ranks, self.X_train.shape[0] + 1)
        assert_array_less(-0.1, pred_ranks)

    def test_predict_rank_normalized(self):
        pred_socres = self.clf.decision_function(self.X_test)
        pred_ranks = self.clf._predict_rank(self.X_test, normalized=True)

        # assert the order is reserved
        assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
        assert_array_less(pred_ranks, 1.01)
        assert_array_less(-0.1, pred_ranks)

    def tearDown(self):
        pass
예제 #2
0
class TestLSCP(unittest.TestCase):
    def setUp(self):
        self.n_train = 100
        self.n_test = 50
        self.contamination = 0.1
        self.roc_floor = 0.6
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            contamination=self.contamination,
            random_state=42)
        self.X_train, self.X_test = standardizer(self.X_train, self.X_test)
        self.detector_list = [LOF(), LOF()]
        self.clf = LSCP(self.detector_list, contamination=self.contamination)
        self.clf.fit(self.X_train)

    def test_parameters(self):
        assert_true(
            hasattr(self.clf, 'decision_scores_')
            and self.clf.decision_scores_ is not None)
        assert_true(
            hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert_true(
            hasattr(self.clf, 'threshold_')
            and self.clf.threshold_ is not None)
        assert_true(hasattr(self.clf, '_mu') and self.clf._mu is not None)
        assert_true(
            hasattr(self.clf, '_sigma') and self.clf._sigma is not None)
        assert_true(
            hasattr(self.clf, 'detector_list')
            and self.clf.detector_list is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    def test_predict_rank(self):
        pred_socres = self.clf.decision_function(self.X_test)
        pred_ranks = self.clf._predict_rank(self.X_test)

        # assert the order is reserved
        assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
        assert_array_less(pred_ranks, self.X_train.shape[0] + 1)
        assert_array_less(-0.1, pred_ranks)

    def test_predict_rank_normalized(self):
        pred_socres = self.clf.decision_function(self.X_test)
        pred_ranks = self.clf._predict_rank(self.X_test, normalized=True)

        # assert the order is reserved
        assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
        assert_array_less(pred_ranks, 1.01)
        assert_array_less(-0.1, pred_ranks)

    def tearDown(self):
        pass