예제 #1
0
파일: cplex.py 프로젝트: jsiirola/pyomo
 def __init__(self, solver):
     super(CplexResults, self).__init__()
     self.wallclock_time = None
     self.solution_loader = PersistentSolutionLoader(solver=solver)
예제 #2
0
파일: ipopt.py 프로젝트: ZedongPeng/pyomo
    def _parse_sol(self):
        solve_vars = self._writer.get_ordered_vars()
        solve_cons = self._writer.get_ordered_cons()
        results = Results()

        f = open(self._filename + '.sol', 'r')
        all_lines = list(f.readlines())
        f.close()

        termination_line = all_lines[1]
        if 'Optimal Solution Found' in termination_line:
            results.termination_condition = TerminationCondition.optimal
        elif 'Problem may be infeasible' in termination_line:
            results.termination_condition = TerminationCondition.infeasible
        elif 'problem might be unbounded' in termination_line:
            results.termination_condition = TerminationCondition.unbounded
        elif 'Maximum Number of Iterations Exceeded' in termination_line:
            results.termination_condition = TerminationCondition.maxIterations
        elif 'Maximum CPU Time Exceeded' in termination_line:
            results.termination_condition = TerminationCondition.maxTimeLimit
        else:
            results.termination_condition = TerminationCondition.unknown

        n_cons = len(solve_cons)
        n_vars = len(solve_vars)
        dual_lines = all_lines[12:12 + n_cons]
        primal_lines = all_lines[12 + n_cons:12 + n_cons + n_vars]

        rc_upper_info_line = all_lines[12 + n_cons + n_vars + 1]
        assert rc_upper_info_line.startswith('suffix')
        n_rc_upper = int(rc_upper_info_line.split()[2])
        assert 'ipopt_zU_out' in all_lines[12 + n_cons + n_vars + 2]
        upper_rc_lines = all_lines[12 + n_cons + n_vars + 3:12 + n_cons +
                                   n_vars + 3 + n_rc_upper]

        rc_lower_info_line = all_lines[12 + n_cons + n_vars + 3 + n_rc_upper]
        assert rc_lower_info_line.startswith('suffix')
        n_rc_lower = int(rc_lower_info_line.split()[2])
        assert 'ipopt_zL_out' in all_lines[12 + n_cons + n_vars + 3 +
                                           n_rc_upper + 1]
        lower_rc_lines = all_lines[12 + n_cons + n_vars + 3 + n_rc_upper +
                                   2:12 + n_cons + n_vars + 3 + n_rc_upper +
                                   2 + n_rc_lower]

        self._dual_sol = dict()
        self._primal_sol = ComponentMap()
        self._reduced_costs = ComponentMap()

        for ndx, dual in enumerate(dual_lines):
            dual = float(dual)
            con = solve_cons[ndx]
            self._dual_sol[con] = dual

        for ndx, primal in enumerate(primal_lines):
            primal = float(primal)
            var = solve_vars[ndx]
            self._primal_sol[var] = primal

        for rcu_line in upper_rc_lines:
            split_line = rcu_line.split()
            var_ndx = int(split_line[0])
            rcu = float(split_line[1])
            var = solve_vars[var_ndx]
            self._reduced_costs[var] = rcu

        for rcl_line in lower_rc_lines:
            split_line = rcl_line.split()
            var_ndx = int(split_line[0])
            rcl = float(split_line[1])
            var = solve_vars[var_ndx]
            if var in self._reduced_costs:
                if abs(rcl) > abs(self._reduced_costs[var]):
                    self._reduced_costs[var] = rcl
            else:
                self._reduced_costs[var] = rcl

        for var in solve_vars:
            if var not in self._reduced_costs:
                self._reduced_costs[var] = 0

        if results.termination_condition == TerminationCondition.optimal and self.config.load_solution:
            for v, val in self._primal_sol.items():
                v.set_value(val, skip_validation=True)

            if self._writer.get_active_objective() is None:
                results.best_feasible_objective = None
            else:
                results.best_feasible_objective = value(
                    self._writer.get_active_objective().expr)
        elif results.termination_condition == TerminationCondition.optimal:
            if self._writer.get_active_objective() is None:
                results.best_feasible_objective = None
            else:
                obj_expr_evaluated = replace_expressions(
                    self._writer.get_active_objective().expr,
                    substitution_map={
                        id(v): val
                        for v, val in self._primal_sol.items()
                    },
                    descend_into_named_expressions=True,
                    remove_named_expressions=True)
                results.best_feasible_objective = value(obj_expr_evaluated)
        elif self.config.load_solution:
            raise RuntimeError(
                'A feasible solution was not found, so no solution can be loaded.'
                'Please set opt.config.load_solution=False and check '
                'results.termination_condition and '
                'resutls.best_feasible_objective before loading a solution.')

        results.solution_loader = PersistentSolutionLoader(solver=self)

        return results
예제 #3
0
파일: cbc.py 프로젝트: michaelbynum/pyomo
    def _parse_soln(self):
        results = Results()

        f = open(self._filename + '.soln', 'r')
        all_lines = list(f.readlines())
        f.close()

        termination_line = all_lines[0].lower()
        obj_val = None
        if termination_line.startswith('optimal'):
            results.termination_condition = TerminationCondition.optimal
            obj_val = float(termination_line.split()[-1])
        elif 'infeasible' in termination_line:
            results.termination_condition = TerminationCondition.infeasible
        elif 'unbounded' in termination_line:
            results.termination_condition = TerminationCondition.unbounded
        elif termination_line.startswith('stopped on time'):
            results.termination_condition = TerminationCondition.maxTimeLimit
            obj_val = float(termination_line.split()[-1])
        elif termination_line.startswith('stopped on iterations'):
            results.termination_condition = TerminationCondition.maxIterations
            obj_val = float(termination_line.split()[-1])
        else:
            results.termination_condition = TerminationCondition.unknown

        first_con_line = None
        last_con_line = None
        first_var_line = None
        last_var_line = None

        for ndx, line in enumerate(all_lines):
            if line.strip('*').strip().startswith('0'):
                if first_con_line is None:
                    first_con_line = ndx
                else:
                    last_con_line = ndx - 1
                    first_var_line = ndx
        last_var_line = len(all_lines) - 1

        self._dual_sol = dict()
        self._primal_sol = dict()
        self._reduced_costs = dict()

        symbol_map = self._writer.symbol_map

        for line in all_lines[first_con_line:last_con_line+1]:
            split_line = line.strip('*')
            split_line = split_line.split()
            name = split_line[1]
            orig_name = name[:-3]
            if orig_name == 'obj_const_con':
                continue
            con = symbol_map.bySymbol[orig_name]()
            dual_val = float(split_line[-1])
            if con in self._dual_sol:
                if abs(dual_val) > abs(self._dual_sol[con]):
                    self._dual_sol[con] = dual_val
            else:
                self._dual_sol[con] = dual_val

        for line in all_lines[first_var_line:last_var_line+1]:
            split_line = line.strip('*')
            split_line = split_line.split()
            name = split_line[1]
            if name == 'obj_const':
                continue
            val = float(split_line[2])
            rc = float(split_line[3])
            var = symbol_map.bySymbol[name]()
            self._primal_sol[id(var)] = (var, val)
            self._reduced_costs[id(var)] = (var, rc)

        if (self.version() < (2, 10, 2) and
                self._writer.get_active_objective() is not None and
                self._writer.get_active_objective().sense == maximize):
            if obj_val is not None:
                obj_val = -obj_val
            for con, dual_val in self._dual_sol.items():
                self._dual_sol[con] = -dual_val
            for v_id, (v, rc_val) in self._reduced_costs.items():
                self._reduced_costs[v_id] = (v, -rc_val)

        if results.termination_condition == TerminationCondition.optimal and self.config.load_solution:
            for v_id, (v, val) in self._primal_sol.items():
                v.set_value(val, skip_validation=True)
            if self._writer.get_active_objective() is None:
                results.best_feasible_objective = None
            else:
                results.best_feasible_objective = obj_val
        elif results.termination_condition == TerminationCondition.optimal:
            if self._writer.get_active_objective() is None:
                results.best_feasible_objective = None
            else:
                results.best_feasible_objective = obj_val
        elif self.config.load_solution:
            raise RuntimeError('A feasible solution was not found, so no solution can be loaded.'
                               'Please set opt.config.load_solution=False and check '
                               'results.termination_condition and '
                               'resutls.best_feasible_objective before loading a solution.')

        results.solution_loader = PersistentSolutionLoader(solver=self)

        return results