예제 #1
0
    def _f(m: Block):
        m.lmbda = Var(vertices, domain=NonNegativeReals)  # 非负
        m.y = Var(simplices, domain=Binary)  # 二进制

        m.a0 = Constraint(dimensions, rule=lambda m, d: sum(m.lmbda[v] * pointsT[d][v] for v in vertices) == input[d])
        if bound == 'eq':
            m.a1 = Constraint(expr=output == sum(m.lmbda[v] * values[v] for v in vertices))
        elif bound == 'lb':
            m.a1 = Constraint(expr=output <= sum(m.lmbda[v] * values[v] for v in vertices))
        elif bound == 'ub':
            m.a1 = Constraint(expr=output >= sum(m.lmbda[v] * values[v] for v in vertices))
        else:
            raise RuntimeError("bound值错误!bound=" + bound)

        m.b = Constraint(expr=sum(m.lmbda[v] for v in vertices) == 1)

        # generate a map from vertex index to simplex index,
        # which avoids an n^2 lookup when generating the
        # constraint
        vertex_to_simplex = [[] for _ in vertices]
        for s, simplex in enumerate(tri.simplices):
            for v in simplex:
                vertex_to_simplex[v].append(s)
        m.c0 = Constraint(vertices, rule=lambda m, v: m.lmbda[v] <= sum(m.y[s] for s in vertex_to_simplex[v]))
        m.c1 = Constraint(expr=sum(m.y[s] for s in simplices) == 1)
        return m
예제 #2
0
def dlog(m: Block,
         tri: qhull.Delaunay,
         values: List[float],
         input: List[SimpleVar] = None,
         output: SimpleVar = None,
         bound: str = 'eq',
         **kw):
    values = np.array(values).tolist()
    ndim = len(input)
    nsimplices = len(tri.simplices)
    npoints = len(tri.points)
    pointsT = list(zip(*tri.points))
    # create index objects
    dimensions = list(range(ndim))
    simplices = list(range(nsimplices))  # 跟单纯形 数量一致
    vertices = list(range(npoints))
    bound = bound.lower()
    L = int(math.ceil(math.log2(nsimplices)))
    L_Range = list(range(L))
    vp = [0, 1, 2]
    #
    m.lmbda = Var(simplices, vp, domain=NonNegativeReals)  # 非负
    m.a0 = Constraint(
        dimensions,
        rule=lambda m, d: sum(m.lmbda[s, v] * pointsT[d][tri.simplices[s][v]]
                              for s in simplices for v in vp) == input[d])
    if bound == 'eq':
        m.a1 = Constraint(expr=output == sum(
            m.lmbda[s, v] * values[tri.simplices[s][v]] for s in simplices
            for v in vp))
    elif bound == 'lb':
        m.a1 = Constraint(
            expr=output <= sum(m.lmbda[s, v] * values[tri.simplices[s][v]]
                               for s in simplices for v in vp))
    elif bound == 'ub':
        m.a1 = Constraint(
            expr=output >= sum(m.lmbda[s, v] * values[tri.simplices[s][v]]
                               for s in simplices for v in vp))
    else:
        raise RuntimeError("bound值错误!bound=" + bound)

    m.b1 = Constraint(expr=sum(m.lmbda[s, v] for s in simplices
                               for v in vp) == 1)

    m.y = Var(L_Range, domain=Binary)  # 二进制

    m.c0 = Constraint(L_Range,
                      rule=lambda m, l: sum(m.lmbda[s, v] for s in simplices
                                            if bin(s)[2:].zfill(L)[l] == '1'
                                            for v in vp) <= m.y[l])
    m.c1 = Constraint(L_Range,
                      rule=lambda m, l: sum(m.lmbda[s, v] for s in simplices
                                            if bin(s)[2:].zfill(L)[l] == '0'
                                            for v in vp) <= 1 - m.y[l])
    return m
예제 #3
0
def cc(m: Block,
       tri: qhull.Delaunay,
       values: List[float],
       input: List[SimpleVar] = None,
       output: SimpleVar = None,
       bound: str = 'eq',
       **kw):
    values = np.array(values).tolist()
    ndim = len(input)
    nsimplices = len(tri.simplices)
    npoints = len(tri.points)
    pointsT = list(zip(*tri.points))
    # create index objects
    dimensions = list(range(ndim))
    simplices = list(range(nsimplices))  # 跟单纯形 数量一致
    vertices = list(range(npoints))
    bound = bound.lower()

    m.lmbda = Var(vertices, domain=NonNegativeReals)  # 非负
    m.y = Var(simplices, domain=Binary)  # 二进制
    # m.y = Var(simplices, domain=NonNegativeReals, bounds=(0, 1))  # 二进制

    m.a0 = Constraint(dimensions,
                      rule=lambda m, d: sum(m.lmbda[v] * pointsT[d][v]
                                            for v in vertices) == input[d])
    if bound == 'eq':
        m.a1 = Constraint(expr=output == sum(m.lmbda[v] * values[v]
                                             for v in vertices))
    elif bound == 'lb':
        m.a1 = Constraint(expr=output <= sum(m.lmbda[v] * values[v]
                                             for v in vertices))
    elif bound == 'ub':
        m.a1 = Constraint(expr=output >= sum(m.lmbda[v] * values[v]
                                             for v in vertices))
    else:
        raise RuntimeError("bound值错误!bound=" + bound)

    m.b = Constraint(expr=sum(m.lmbda[v] for v in vertices) == 1)

    # generate a map from vertex index to simplex index,
    # which avoids an n^2 lookup when generating the
    # constraint
    vertex_to_simplex = [[] for _ in vertices]
    for s, simplex in enumerate(tri.simplices):
        for v in simplex:
            vertex_to_simplex[v].append(s)
    m.c0 = Constraint(
        vertices,
        rule=lambda m, v: m.lmbda[v] <= sum(m.y[s]
                                            for s in vertex_to_simplex[v]))
    m.c1 = Constraint(expr=sum(m.y[s] for s in simplices) == 1)
    return m