def test_reclassification_collocation(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertFalse(m.int1.is_fully_discretized()) self.assertFalse(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) TransformationFactory('dae.collocation').apply_to(m, wrt=m.t) self.assertTrue(m.int1.is_fully_discretized()) self.assertTrue(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) TransformationFactory('dae.collocation').apply_to(m, wrt=m.x) self.assertTrue(m.int3.is_fully_discretized()) self.assertTrue(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Expression) self.assertTrue(m.int2.ctype is Expression) self.assertTrue(m.int3.ctype is Expression) self.assertTrue(m.int4.ctype is Expression)
def construct_objective_from_expression_list(self, wrt, *args): """ Construct objective from list of expression to be integrated with respect to wrt. :param str name: name of the new integral expression (optional) :param wrt: Set for the integration of the expressions :param args: Expression of instantaneous objectives :return: Objective """ from pyomo.environ import Expression from pyomo.dae import Integral for exp in args: assert isinstance(exp, Expression), ValueError(f'args should be a list of pyomo Expression,' f' and actually received {exp, type(exp)}') self.new_int = Integral(wrt, wrt=wrt, rule=lambda model, index: sum([a[index] for a in args])) return Objective(expr=self.new_int)
def test_invalid(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.x, m.t) def _int(m, t): return m.v[t] def _int2(m, x, t): return m.v3[x, t] def _int3(m, s, t): return m.v2[s, t] # Integrals must be indexed by a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(rule=_int) # Specifying multiple aliases of same option with self.assertRaises(TypeError): m.int = Integral(m.t, wrt=m.t, withrespectto=m.t, rule=_int) # No ContinuousSet specified with self.assertRaises(ValueError): m.int2 = Integral(m.x, m.t, rule=_int2) # 'wrt' is not a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(m.s, m.t, wrt=m.s, rule=_int2) # 'wrt' is not in argument list with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.x, rule=_int) # 'bounds' not supported with self.assertRaises(DAE_Error): m.int = Integral(m.t, wrt=m.t, rule=_int, bounds=(0, 0.5)) # No rule specified with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.t)
def test_invalid(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.x, m.t) def _int(m, t): return m.v[t] def _int2(m, x, t): return m.v3[x, t] def _int3(m, s, t): return m.v2[s, t] # Integrals must be indexed by a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(rule=_int) # Specifying multiple aliases of same option with self.assertRaises(TypeError): m.int = Integral(m.t, wrt=m.t, withrespectto=m.t, rule=_int) # No ContinuousSet specified with self.assertRaises(ValueError): m.int2 = Integral(m.x, m.t, rule=_int2) # 'wrt' is not a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(m.s, m.t, wrt=m.s, rule=_int2) # 'wrt' is not in argument list with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.x, rule=_int) # 'bounds' not supported with self.assertRaises(DAE_Error): m.int = Integral(m.t, wrt=m.t, rule=_int, bounds=(0, 0.5)) # No rule specified with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.t) # test DerivativeVar reclassification after discretization def test_reclassification_finite_difference(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertFalse(m.int1.is_fully_discretized()) self.assertFalse(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.t) self.assertTrue(m.int1.is_fully_discretized()) self.assertTrue(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.x) self.assertTrue(m.int3.is_fully_discretized()) self.assertTrue(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Expression) self.assertTrue(m.int2.ctype is Expression) self.assertTrue(m.int3.ctype is Expression) self.assertTrue(m.int4.ctype is Expression)
def test_valid(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertTrue(isinstance(m.int1, Expression)) self.assertTrue(isinstance(m.int2, Expression)) self.assertTrue(isinstance(m.int3, Expression)) self.assertTrue(isinstance(m.int4, Expression)) self.assertTrue(m.int1.get_continuousset() is m.t) self.assertTrue(m.int2.get_continuousset() is m.t) self.assertTrue(m.int3.get_continuousset() is m.t) self.assertTrue(m.int4.get_continuousset() is m.x) self.assertEqual(len(m.int1), 1) self.assertEqual(len(m.int2), 3) self.assertEqual(len(m.int3), 2) self.assertEqual(len(m.int4), 1) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) repn = generate_standard_repn(m.int1.expr) self.assertEqual(repn.linear_coefs, (0.5, 0.5)) self.assertTrue(repn.linear_vars[0] is m.v[1]) self.assertTrue(repn.linear_vars[1] is m.v[0]) repn = generate_standard_repn(m.int2[1].expr) self.assertEqual(repn.linear_coefs, (0.5, 0.5)) self.assertTrue(repn.linear_vars[0] is m.v2[1, 1]) self.assertTrue(repn.linear_vars[1] is m.v2[1, 0]) repn = generate_standard_repn(m.int4.expr) self.assertEqual(repn.linear_coefs, (1.25, 1.25, 1.25, 1.25)) self.assertTrue(repn.linear_vars[0] is m.v3[1, 10]) self.assertTrue(repn.linear_vars[1] is m.v3[0, 10]) self.assertTrue(repn.linear_vars[2] is m.v3[1, 5]) self.assertTrue(repn.linear_vars[3] is m.v3[0, 5])
def test_battery_v0(self): from lms2 import BatteryV0, PowerLoad, FixedPowerLoad, AbsLModel from pyomo.environ import TransformationFactory, SolverFactory from pyomo.dae import ContinuousSet from pyomo.network import Arc m = AbsLModel() m.time = ContinuousSet() m.b = BatteryV0() m.pl = FixedPowerLoad() m.ps = PowerLoad() m.arc1 = Arc(source=m.b.outlet, dest=m.pl.inlet) m.arc2 = Arc(source=m.b.outlet, dest=m.ps.inlet) data_batt = dict( time={None: [0, 10]}, dpcmax={None: 100000}, dpdmax={None: 100000}, emin={None: 0}, emax={None: 500}, pcmax={None: 80}, pdmax={None: 80}, e0={None: 50}, ef={None: None}, etac={None: 1.0}, etad={None: 1.0}) data_pl = { 'time': {None: [0, 10]}, 'profile_index': {None: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, 'profile_value': dict(zip([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [10, 0, -10, -90, -20, 20, 30, 40, 40, 10])) } data_ps = { 'time': {None: (0, 10)} } data = \ {None: { 'time': {None: [0, 10]}, 'b': data_batt, 'pl': data_pl, 'ps': data_ps } } inst = m.create_instance(data) from lms2.economic.cost import def_absolute_cost from pyomo.environ import Objective from pyomo.dae import Integral inst.ps.instant_cost = def_absolute_cost(inst.ps, var_name='p') inst.new_int = Integral(inst.time, wrt=inst.time, rule=lambda b, t: b.ps.instant_cost[t]) TransformationFactory('dae.finite_difference').apply_to(inst, nfe=5) TransformationFactory("network.expand_arcs").apply_to(inst) inst.obj = Objective(expr=inst.new_int) opt = SolverFactory("glpk") from time import time t1 = time() results = opt.solve(inst, tee=False) print(f'Solve time : {time() - t1:0.4f} s') from pyomo.opt import SolverStatus, TerminationCondition self.assertTrue(results.solver.status == SolverStatus.ok) self.assertTrue(results.solver.termination_condition == TerminationCondition.optimal)
def test_battery_v3(self): from lms2 import BatteryV3, FixedPowerLoad, AbsLModel, PVPanels, DebugSource, MainGridV1 from lms2.economic.cost import def_absolute_cost from pyomo.environ import TransformationFactory, SolverFactory from pyomo.dae import ContinuousSet from pyomo.network import Arc import numpy as np import pandas as pd m = AbsLModel() m.time = ContinuousSet(initialize=(0, 10)) m.b = BatteryV3(method='piecewise') m.pl = FixedPowerLoad() m.debug = DebugSource() m.mg = MainGridV1() m.ps = PVPanels(curtailable=True) m.arc1 = Arc(source=m.b.outlet, dest=m.pl.inlet) m.arc2 = Arc(source=m.ps.outlet, dest=m.pl.inlet) m.arc3 = Arc(source=m.debug.outlet, dest=m.pl.inlet) m.arc4 = Arc(source=m.mg.outlet, dest=m.pl.inlet) m.b.inst_cost = def_absolute_cost(m.b, var_name='dp') t = pd.timedelta_range(start=0, end='2 days', freq='30Min').total_seconds() ps = [(-np.cos(2 * np.pi * i / (86400)) + 1)**6 / 2**6 * (0.2 * np.sin(2 * np.pi * i / (86400 * 7)) + 0.4) * 10 for i in t] pl = np.array([5] * len(t)) time = (t[0], 86400 * 2) nfe = 24 * 2 * 60 / 30 data_batt = dict( time={None: time}, dpcmax={None: 100}, dpdmax={None: 100}, socmin={None: 40}, socmax={None: 100}, soc0={None: 50}, socf={None: 50}, # final soc socabs={None: 85}, # absorption soc emin={None: 40}, emax={None: 100}, pcmax={None: 20}, pdmax={None: 20}, etac={None: 0.90}, etad={None: 0.90}, pw_i={None: [1, 2, 3]}, pw_j={None: [1, 2]}, pw_soc={ 1: 40, 2: 85, 3: 100 }, pw_pcmax={ 1: 20, 2: 20, 3: 1 }, pfloat={None: 0.125}, max_cycles={None: 10}, cycle_passed={None: 8}, dp_cost={None: 0}) data_mg = { 'time': { None: time }, 'cost_out': { None: 0.15 }, 'cost_in': { None: 0 }, 'pmax': { None: 30 }, 'pmin': { None: 0 } } data_pl = { 'time': { None: time }, 'profile_index': { None: t }, 'profile_value': dict(zip(t, pl)) } data_ps = { 'time': { None: time }, 'profile_index': { None: t }, 'profile_value': dict(zip(t, ps)) } data_debug = {'time': {None: time}, 'p_cost': {None: 10}} data = { None: dict(time={None: time}, b=data_batt, mg=data_mg, ps=data_ps, debug=data_debug, pl=data_pl) } inst = m.create_instance(data) inst.ps.surf.fix(4) from lms2.economic.cost import def_absolute_cost from pyomo.environ import Objective from pyomo.dae import Integral from pyomo.opt import SolverStatus, TerminationCondition TransformationFactory('dae.finite_difference').apply_to(inst, nfe=nfe) TransformationFactory("network.expand_arcs").apply_to(inst) inst.ps.instant_cost = def_absolute_cost(inst.ps, var_name='p') inst.new_int = Integral(inst.time, wrt=inst.time, rule=lambda b, t: b.debug.inst_cost[t] + b.b. inst_cost[t] + b.mg.instant_cost[t]) inst.b._nbr_charge.reconstruct() inst.obj = Objective(expr=inst.new_int) opt = SolverFactory("gurobi", solver_io="direct") results = opt.solve(inst, tee=False) self.assertTrue(results.solver.status == SolverStatus.ok) self.assertTrue(results.solver.termination_condition == TerminationCondition.optimal) self.assertAlmostEqual(7.8386091, inst.obj(), places=5)