def connect(self, **kwds): """ Construct a data manager object that is associated with the input source. This data manager is used to process future data imports and exports. Args: filename (str): A filename that specifies the data source. Default is :const:`None`. server (str): The name of the remote server that hosts the data. Default is :const:`None`. using (str): The name of the resource used to load the data. Default is :const:`None`. Other keyword arguments are passed to the data manager object. """ if not self._data_manager is None: self._data_manager.close() data = kwds.get('using', None) if data is None: data = kwds.get('filename', None) if data is None: data = kwds.get('server', None) if '.' in data: tmp = data.split(".")[-1] else: tmp = data self._data_manager = DataManagerFactory(tmp) if type(self._data_manager) is UnknownDataManager: raise IOError("Unknown file format '%s'" % tmp) self._data_manager.initialize(**kwds) self._data_manager.open()
def _process_load(cmd, _model, _data, _default, options=None): #print("LOAD %s" % cmd) from pyomo.core import Set _cmd_len = len(cmd) _options = {} _options['filename'] = cmd[1] i = 2 while cmd[i] != ':': _options[cmd[i]] = cmd[i + 2] i += 3 i += 1 _Index = (None, []) if type(cmd[i]) is tuple: _Index = (None, cmd[i]) i += 1 elif i + 1 < _cmd_len and cmd[i + 1] == '=': _Index = (cmd[i], cmd[i + 2]) i += 3 _smap = OrderedDict() while i < _cmd_len: if i + 2 < _cmd_len and cmd[i + 1] == '=': _smap[cmd[i + 2]] = cmd[i] i += 3 else: _smap[cmd[i]] = cmd[i] i += 1 if len(cmd) < 2: raise IOError("The 'load' command must specify a filename") options = Options(**_options) for key in options: if not key in [ 'range', 'filename', 'format', 'using', 'driver', 'query', 'table', 'user', 'password', 'database' ]: raise ValueError("Unknown load option '%s'" % key) global Filename Filename = options.filename global Lineno Lineno = 0 # # TODO: process mapping info # if options.using is None: tmp = options.filename.split(".")[-1] data = DataManagerFactory(tmp) if (data is None) or \ isinstance(data, UnknownDataManager): raise ApplicationError("Data manager '%s' is not available." % tmp) else: try: data = DataManagerFactory(options.using) except: data = None if (data is None) or \ isinstance(data, UnknownDataManager): raise ApplicationError("Data manager '%s' is not available." % options.using) set_name = None # # Create symbol map # symb_map = _smap if len(symb_map) == 0: raise IOError( "Must specify at least one set or parameter name that will be loaded" ) # # Process index data # _index = None index_name = _Index[0] _select = None # # Set the 'set name' based on the format # _set = None if options.format == 'set' or options.format == 'set_array': if len(_smap) != 1: raise IOError( "A single set name must be specified when using format '%s'" % options.format) set_name = list(_smap.keys())[0] _set = set_name # # Set the 'param name' based on the format # _param = None if options.format == 'transposed_array' or options.format == 'array' or options.format == 'param': if len(_smap) != 1: raise IOError( "A single parameter name must be specified when using format '%s'" % options.format) if options.format in ('transposed_array', 'array', 'param', None): if _Index[0] is None: _index = None else: _index = _Index[0] _param = [] _select = list(_Index[1]) for key in _smap: _param.append(_smap[key]) _select.append(key) if options.format in ('transposed_array', 'array'): _select = None #print "YYY", _param, options if not _param is None and len( _param) == 1 and not _model is None and isinstance( getattr(_model, _param[0]), Set): _select = None _set = _param[0] _param = None _index = None #print "SELECT", _param, _select # data.initialize(model=options.model, filename=options.filename, index=_index, index_name=index_name, param_name=symb_map, set=_set, param=_param, format=options.format, range=options.range, query=options.query, using=options.using, table=options.table, select=_select, user=options.user, password=options.password, database=options.database) # data.open() try: data.read() except Exception: data.close() raise data.close() data.process(_model, _data, _default)