예제 #1
0
 def test_inc_reused_loop(self, set):
     from pyop2.base import collecting_loops
     g = op2.Global(1, 0, dtype=numpy.uint32)
     k = """void k(unsigned int* g) { *g += 1; }"""
     with collecting_loops(True):
         loop = op2.par_loop(op2.Kernel(k, "k"), set, g(op2.INC))
     loop()
     assert_allclose(g.data, set.size)
     loop()
     assert_allclose(g.data, 2 * set.size)
     g.zero()
     loop()
     assert_allclose(g.data, set.size)
예제 #2
0
 def test_inc_reused_loop(self, set):
     from pyop2.base import collecting_loops
     g = op2.Global(1, 0, dtype=numpy.uint32)
     k = """static void k(unsigned int* g) { *g += 1; }"""
     with collecting_loops(True):
         loop = op2.par_loop(op2.Kernel(k, "k"),
                             set,
                             g(op2.INC))
     loop()
     assert_allclose(g.data, set.size)
     loop()
     assert_allclose(g.data, 2*set.size)
     g.zero()
     loop()
     assert_allclose(g.data, set.size)
예제 #3
0
파일: assemble.py 프로젝트: tlroy/firedrake
    def thunk(bcs):
        if collect_loops:
            loops.append(zero_tensor)
        else:
            zero_tensor()
        for indices, kinfo in kernels:
            kernel = kinfo.kernel
            integral_type = kinfo.integral_type
            domain_number = kinfo.domain_number
            subdomain_id = kinfo.subdomain_id
            coeff_map = kinfo.coefficient_map
            pass_layer_arg = kinfo.pass_layer_arg
            needs_orientations = kinfo.oriented
            needs_cell_facets = kinfo.needs_cell_facets
            needs_cell_sizes = kinfo.needs_cell_sizes

            m = domains[domain_number]
            subdomain_data = f.subdomain_data()[m]
            # Find argument space indices
            if is_mat:
                i, j = indices
            elif is_vec:
                i, = indices
            else:
                assert len(indices) == 0

            sdata = subdomain_data.get(integral_type, None)
            if integral_type != 'cell' and sdata is not None:
                raise NotImplementedError(
                    "subdomain_data only supported with cell integrals.")

            # Extract block from tensor and test/trial spaces
            # FIXME Ugly variable renaming required because functions are not
            # lexical closures in Python and we're writing to these variables
            if is_mat and result_matrix.block_shape > (1, 1):
                tsbc = []
                trbc = []
                # Unwind ComponentFunctionSpace to check for matching BCs
                for bc in bcs:
                    fs = bc.function_space()
                    if fs.component is not None:
                        fs = fs.parent
                    if fs.index == i:
                        tsbc.append(bc)
                    if fs.index == j:
                        trbc.append(bc)
            elif is_mat:
                tsbc, trbc = bcs, bcs

            # Now build arguments for the par_loop
            kwargs = {}
            # Some integrals require non-coefficient arguments at the
            # end (facet number information).
            extra_args = []
            # Decoration for applying to matrix maps in extruded case
            decoration = None
            itspace = m.measure_set(integral_type, subdomain_id,
                                    all_integer_subdomain_ids)
            if integral_type == "cell":
                itspace = sdata or itspace

                if subdomain_id not in ["otherwise", "everywhere"] and \
                   sdata is not None:
                    raise ValueError(
                        "Cannot use subdomain data and subdomain_id")

                def get_map(x, bcs=None, decoration=None):
                    return x.cell_node_map(bcs)

            elif integral_type in ("exterior_facet", "exterior_facet_vert"):
                extra_args.append(m.exterior_facets.local_facet_dat(op2.READ))

                def get_map(x, bcs=None, decoration=None):
                    return x.exterior_facet_node_map(bcs)

            elif integral_type in ("exterior_facet_top",
                                   "exterior_facet_bottom"):
                # In the case of extruded meshes with horizontal facet integrals, two
                # parallel loops will (potentially) get created and called based on the
                # domain id: interior horizontal, bottom or top.
                decoration = {
                    "exterior_facet_top": op2.ON_TOP,
                    "exterior_facet_bottom": op2.ON_BOTTOM
                }[integral_type]
                kwargs["iterate"] = decoration

                def get_map(x, bcs=None, decoration=None):
                    map_ = x.cell_node_map(bcs)
                    if decoration is not None:
                        return op2.DecoratedMap(map_, decoration)
                    return map_

            elif integral_type in ("interior_facet", "interior_facet_vert"):
                extra_args.append(m.interior_facets.local_facet_dat(op2.READ))

                def get_map(x, bcs=None, decoration=None):
                    return x.interior_facet_node_map(bcs)

            elif integral_type == "interior_facet_horiz":
                decoration = op2.ON_INTERIOR_FACETS
                kwargs["iterate"] = decoration

                def get_map(x, bcs=None, decoration=None):
                    map_ = x.cell_node_map(bcs)
                    if decoration is not None:
                        return op2.DecoratedMap(map_, decoration)
                    return map_

            else:
                raise ValueError("Unknown integral type '%s'" % integral_type)

            # Output argument
            if is_mat:
                tensor_arg = mat(lambda s: get_map(s, tsbc, decoration),
                                 lambda s: get_map(s, trbc, decoration), i, j)
            elif is_vec:
                tensor_arg = vec(lambda s: get_map(s), i)
            else:
                tensor_arg = tensor(op2.INC)

            coords = m.coordinates
            args = [
                kernel, itspace, tensor_arg,
                coords.dat(op2.READ,
                           get_map(coords)[op2.i[0]])
            ]
            if needs_orientations:
                o = m.cell_orientations()
                args.append(o.dat(op2.READ, get_map(o)[op2.i[0]]))
            if needs_cell_sizes:
                o = m.cell_sizes
                args.append(o.dat(op2.READ, get_map(o)[op2.i[0]]))
            for n in coeff_map:
                c = coefficients[n]
                for c_ in c.split():
                    m_ = get_map(c_)
                    args.append(c_.dat(op2.READ, m_ and m_[op2.i[0]]))
            if needs_cell_facets:
                assert integral_type == "cell"
                extra_args.append(m.cell_to_facets(op2.READ))

            args.extend(extra_args)
            kwargs["pass_layer_arg"] = pass_layer_arg

            try:
                with collecting_loops(collect_loops):
                    loops.append(op2.par_loop(*args, **kwargs))
            except MapValueError:
                raise RuntimeError(
                    "Integral measure does not match measure of all coefficients/arguments"
                )

        # Must apply bcs outside loop over kernels because we may wish
        # to apply bcs to a block which is otherwise zero, and
        # therefore does not have an associated kernel.
        if bcs is not None and is_mat:
            for bc in bcs:
                fs = bc.function_space()
                # Evaluate this outwith a "collecting_loops" block,
                # since creation of the bc nodes actually can create a
                # par_loop.
                nodes = bc.nodes
                if len(fs) > 1:
                    raise RuntimeError(
                        """Cannot apply boundary conditions to full mixed space. Did you forget to index it?"""
                    )
                shape = result_matrix.block_shape
                with collecting_loops(collect_loops):
                    for i in range(shape[0]):
                        for j in range(shape[1]):
                            # Set diagonal entries on bc nodes to 1 if the current
                            # block is on the matrix diagonal and its index matches the
                            # index of the function space the bc is defined on.
                            if i != j:
                                continue
                            if fs.component is None and fs.index is not None:
                                # Mixed, index (no ComponentFunctionSpace)
                                if fs.index == i:
                                    loops.append(tensor[
                                        i,
                                        j].set_local_diagonal_entries(nodes))
                            elif fs.component is not None:
                                # ComponentFunctionSpace, check parent index
                                if fs.parent.index is not None:
                                    # Mixed, index doesn't match
                                    if fs.parent.index != i:
                                        continue
                                # Index matches
                                loops.append(
                                    tensor[i, j].set_local_diagonal_entries(
                                        nodes, idx=fs.component))
                            elif fs.index is None:
                                loops.append(tensor[
                                    i, j].set_local_diagonal_entries(nodes))
                            else:
                                raise RuntimeError("Unhandled BC case")
        if bcs is not None and is_vec:
            if len(bcs) > 0 and collect_loops:
                raise NotImplementedError(
                    "Loop collection not handled in this case")
            for bc in bcs:
                bc.apply(result_function)
        if is_mat:
            # Queue up matrix assembly (after we've done all the other operations)
            loops.append(tensor.assemble())
        return result()
예제 #4
0
def _assemble(f, tensor=None, bcs=None, form_compiler_parameters=None,
              inverse=False, mat_type=None, sub_mat_type=None,
              appctx={},
              options_prefix=None,
              assemble_now=False,
              allocate_only=False,
              zero_tensor=True):
    r"""Assemble the form or Slate expression f and return a Firedrake object
    representing the result. This will be a :class:`float` for 0-forms/rank-0
    Slate tensors, a :class:`.Function` for 1-forms/rank-1 Slate tensors and
    a :class:`.Matrix` for 2-forms/rank-2 Slate tensors.

    :arg bcs: A tuple of :class`.DirichletBC`\s and/or :class`.EquationBCSplit`\s to be applied.
    :arg tensor: An existing tensor object into which the form should be
        assembled. If this is not supplied, a new tensor will be created for
        the purpose.
    :arg form_compiler_parameters: (optional) dict of parameters to pass to
        the form compiler.
    :arg inverse: (optional) if f is a 2-form, then assemble the inverse
         of the local matrices.
    :arg mat_type: (optional) type for assembled matrices, one of
        "nest", "aij", "baij", or "matfree".
    :arg sub_mat_type: (optional) type for assembled sub matrices
        inside a "nest" matrix.  One of "aij" or "baij".
    :arg appctx: Additional information to hang on the assembled
         matrix if an implicit matrix is requested (mat_type "matfree").
    :arg options_prefix: An options prefix for the PETSc matrix
        (ignored if not assembling a bilinear form).
    """
    if mat_type is None:
        mat_type = parameters.parameters["default_matrix_type"]
    if mat_type not in ["matfree", "aij", "baij", "nest"]:
        raise ValueError("Unrecognised matrix type, '%s'" % mat_type)
    if sub_mat_type is None:
        sub_mat_type = parameters.parameters["default_sub_matrix_type"]
    if sub_mat_type not in ["aij", "baij"]:
        raise ValueError("Invalid submatrix type, '%s' (not 'aij' or 'baij')", sub_mat_type)

    if form_compiler_parameters:
        form_compiler_parameters = form_compiler_parameters.copy()
    else:
        form_compiler_parameters = {}
    form_compiler_parameters["assemble_inverse"] = inverse

    topology = f.ufl_domains()[0].topology
    for m in f.ufl_domains():
        # Ensure mesh is "initialised" (could have got here without
        # building a functionspace (e.g. if integrating a constant)).
        m.init()
        if m.topology != topology:
            raise NotImplementedError("All integration domains must share a mesh topology.")

    for o in chain(f.arguments(), f.coefficients()):
        domain = o.ufl_domain()
        if domain is not None and domain.topology != topology:
            raise NotImplementedError("Assembly with multiple meshes not supported.")

    if isinstance(f, slate.TensorBase):
        kernels = slac.compile_expression(f, tsfc_parameters=form_compiler_parameters)
        integral_types = [kernel.kinfo.integral_type for kernel in kernels]
    else:
        kernels = tsfc_interface.compile_form(f, "form", parameters=form_compiler_parameters, inverse=inverse)
        integral_types = [integral.integral_type() for integral in f.integrals()]

        if bcs is not None:
            for bc in bcs:
                integral_types += [integral.integral_type() for integral in bc.integrals()]

    rank = len(f.arguments())
    is_mat = rank == 2
    is_vec = rank == 1

    if any((coeff.function_space() and coeff.function_space().component is not None)
           for coeff in f.coefficients()):
        raise NotImplementedError("Integration of subscripted VFS not yet implemented")

    if inverse and rank != 2:
        raise ValueError("Can only assemble the inverse of a 2-form")

    zero_tensor_parloop = lambda: None

    if is_mat:
        matfree = mat_type == "matfree"
        nest = mat_type == "nest"
        if nest:
            baij = sub_mat_type == "baij"
        else:
            baij = mat_type == "baij"
        # intercept matrix-free matrices here
        if matfree:
            if inverse:
                raise NotImplementedError("Inverse not implemented with matfree")
            if tensor is None:
                result_matrix = matrix.ImplicitMatrix(f, bcs,
                                                      fc_params=form_compiler_parameters,
                                                      appctx=appctx,
                                                      options_prefix=options_prefix)
                yield lambda: result_matrix
                raise StopIteration()
            if not isinstance(tensor, matrix.ImplicitMatrix):
                raise ValueError("Expecting implicit matrix with matfree")
            tensor.assemble()
            yield lambda: tensor
            raise StopIteration()

        test, trial = f.arguments()

        map_pairs = []
        cell_domains = []
        exterior_facet_domains = []
        interior_facet_domains = []
        if tensor is None:
            # For horizontal facets of extruded meshes, the corresponding domain
            # in the base mesh is the cell domain. Hence all the maps used for top
            # bottom and interior horizontal facets will use the cell to dofs map
            # coming from the base mesh as a starting point for the actual dynamic map
            # computation.
            for integral_type in integral_types:
                if integral_type == "cell":
                    cell_domains.append(op2.ALL)
                elif integral_type == "exterior_facet":
                    exterior_facet_domains.append(op2.ALL)
                elif integral_type == "interior_facet":
                    interior_facet_domains.append(op2.ALL)
                elif integral_type == "exterior_facet_bottom":
                    cell_domains.append(op2.ON_BOTTOM)
                elif integral_type == "exterior_facet_top":
                    cell_domains.append(op2.ON_TOP)
                elif integral_type == "exterior_facet_vert":
                    exterior_facet_domains.append(op2.ALL)
                elif integral_type == "interior_facet_horiz":
                    cell_domains.append(op2.ON_INTERIOR_FACETS)
                elif integral_type == "interior_facet_vert":
                    interior_facet_domains.append(op2.ALL)
                else:
                    raise ValueError('Unknown integral type "%s"' % integral_type)

            # Used for the sparsity construction
            iteration_regions = []
            if cell_domains:
                map_pairs.append((test.cell_node_map(), trial.cell_node_map()))
                iteration_regions.append(tuple(cell_domains))
            if exterior_facet_domains:
                map_pairs.append((test.exterior_facet_node_map(), trial.exterior_facet_node_map()))
                iteration_regions.append(tuple(exterior_facet_domains))
            if interior_facet_domains:
                map_pairs.append((test.interior_facet_node_map(), trial.interior_facet_node_map()))
                iteration_regions.append(tuple(interior_facet_domains))

            map_pairs = tuple(map_pairs)
            # Construct OP2 Mat to assemble into
            fs_names = (test.function_space().name, trial.function_space().name)

            try:
                sparsity = op2.Sparsity((test.function_space().dof_dset,
                                         trial.function_space().dof_dset),
                                        map_pairs,
                                        iteration_regions=iteration_regions,
                                        name="%s_%s_sparsity" % fs_names,
                                        nest=nest,
                                        block_sparse=baij)
            except SparsityFormatError:
                raise ValueError("Monolithic matrix assembly is not supported for systems with R-space blocks.")

            result_matrix = matrix.Matrix(f, bcs, mat_type, sparsity, numpy.float64,
                                          "%s_%s_matrix" % fs_names,
                                          options_prefix=options_prefix)
            tensor = result_matrix._M
        else:
            if isinstance(tensor, matrix.ImplicitMatrix):
                raise ValueError("Expecting matfree with implicit matrix")

            result_matrix = tensor
            tensor = tensor._M
            zero_tensor_parloop = tensor.zero

        if result_matrix.block_shape != (1, 1) and mat_type == "baij":
            raise ValueError("BAIJ matrix type makes no sense for mixed spaces, use 'aij'")

        def mat(testmap, trialmap, rowbc, colbc, i, j):
            m = testmap(test.function_space()[i])
            n = trialmap(trial.function_space()[j])
            maps = (m if m else None, n if n else None)

            rlgmap, clgmap = tensor[i, j].local_to_global_maps
            V = test.function_space()[i]
            rlgmap = V.local_to_global_map(rowbc, lgmap=rlgmap)
            V = trial.function_space()[j]
            clgmap = V.local_to_global_map(colbc, lgmap=clgmap)
            if rowbc is None:
                rowbc = []
            if colbc is None:
                colbc = []
            unroll = any(bc.function_space().component is not None
                         for bc in chain(rowbc, colbc) if bc is not None)
            return tensor[i, j](op2.INC, maps, lgmaps=(rlgmap, clgmap), unroll_map=unroll)

        result = lambda: result_matrix
        if allocate_only:
            yield result
            raise StopIteration()
    elif is_vec:
        test = f.arguments()[0]
        if tensor is None:
            result_function = function.Function(test.function_space())
            tensor = result_function.dat
        else:
            result_function = tensor
            tensor = result_function.dat
            zero_tensor_parloop = tensor.zero

        def vec(testmap, i):
            _testmap = testmap(test.function_space()[i])
            return tensor[i](op2.INC, _testmap if _testmap else None)
        result = lambda: result_function
    else:
        # 0-forms are always scalar
        if tensor is None:
            tensor = op2.Global(1, [0.0])
        else:
            raise ValueError("Can't assemble 0-form into existing tensor")
        result = lambda: tensor.data[0]

    coefficients = f.coefficients()
    domains = f.ufl_domains()

    # These will be used to correctly interpret the "otherwise"
    # subdomain
    all_integer_subdomain_ids = defaultdict(list)
    for k in kernels:
        if k.kinfo.subdomain_id != "otherwise":
            all_integer_subdomain_ids[k.kinfo.integral_type].append(k.kinfo.subdomain_id)
    for k, v in all_integer_subdomain_ids.items():
        all_integer_subdomain_ids[k] = tuple(sorted(v))

    # In collecting loops mode, we collect the loops, and assume the
    # boundary conditions provided are the ones we want.  It therefore
    # is only used inside residual and jacobian assembly.

    if zero_tensor:
        yield zero_tensor_parloop
    for indices, kinfo in kernels:
        kernel = kinfo.kernel
        integral_type = kinfo.integral_type
        domain_number = kinfo.domain_number
        subdomain_id = kinfo.subdomain_id
        coeff_map = kinfo.coefficient_map
        pass_layer_arg = kinfo.pass_layer_arg
        needs_orientations = kinfo.oriented
        needs_cell_facets = kinfo.needs_cell_facets
        needs_cell_sizes = kinfo.needs_cell_sizes

        m = domains[domain_number]
        subdomain_data = f.subdomain_data()[m]
        # Find argument space indices
        if is_mat:
            i, j = indices
        elif is_vec:
            i, = indices
        else:
            assert len(indices) == 0

        sdata = subdomain_data.get(integral_type, None)
        if integral_type != 'cell' and sdata is not None:
            raise NotImplementedError("subdomain_data only supported with cell integrals.")

        # Extract block from tensor and test/trial spaces
        # FIXME Ugly variable renaming required because functions are not
        # lexical closures in Python and we're writing to these variables
        if is_mat:
            if bcs is not None:
                tsbc = list(bc for bc in chain(*bcs))
                if result_matrix.block_shape > (1, 1):
                    trbc = [bc for bc in tsbc if bc.function_space_index() == j and isinstance(bc, DirichletBC)]
                    tsbc = [bc for bc in tsbc if bc.function_space_index() == i]
                else:
                    trbc = [bc for bc in tsbc if isinstance(bc, DirichletBC)]
            else:
                tsbc = []
                trbc = []

        # Now build arguments for the par_loop
        kwargs = {}
        # Some integrals require non-coefficient arguments at the
        # end (facet number information).
        extra_args = []
        # Decoration for applying to matrix maps in extruded case
        decoration = None
        itspace = m.measure_set(integral_type, subdomain_id,
                                all_integer_subdomain_ids)
        if integral_type == "cell":
            itspace = sdata or itspace
            if subdomain_id not in ["otherwise", "everywhere"] and sdata is not None:
                raise ValueError("Cannot use subdomain data and subdomain_id")

            def get_map(x):
                return x.cell_node_map()

        elif integral_type in ("exterior_facet", "exterior_facet_vert"):
            extra_args.append(m.exterior_facets.local_facet_dat(op2.READ))

            def get_map(x):
                return x.exterior_facet_node_map()

        elif integral_type in ("exterior_facet_top", "exterior_facet_bottom"):
            # In the case of extruded meshes with horizontal facet integrals, two
            # parallel loops will (potentially) get created and called based on the
            # domain id: interior horizontal, bottom or top.
            decoration = {"exterior_facet_top": op2.ON_TOP,
                          "exterior_facet_bottom": op2.ON_BOTTOM}[integral_type]
            kwargs["iterate"] = decoration

            def get_map(x):
                return x.cell_node_map()

        elif integral_type in ("interior_facet", "interior_facet_vert"):
            extra_args.append(m.interior_facets.local_facet_dat(op2.READ))

            def get_map(x):
                return x.interior_facet_node_map()

        elif integral_type == "interior_facet_horiz":
            decoration = op2.ON_INTERIOR_FACETS
            kwargs["iterate"] = decoration

            def get_map(x):
                return x.cell_node_map()

        else:
            raise ValueError("Unknown integral type '%s'" % integral_type)

        # Output argument
        if is_mat:
            tensor_arg = mat(lambda s: get_map(s),
                             lambda s: get_map(s),
                             tsbc, trbc,
                             i, j)
        elif is_vec:
            tensor_arg = vec(lambda s: get_map(s), i)
        else:
            tensor_arg = tensor(op2.INC)

        coords = m.coordinates
        args = [kernel, itspace, tensor_arg,
                coords.dat(op2.READ, get_map(coords))]
        if needs_orientations:
            o = m.cell_orientations()
            args.append(o.dat(op2.READ, get_map(o)))
        if needs_cell_sizes:
            o = m.cell_sizes
            args.append(o.dat(op2.READ, get_map(o)))

        for n in coeff_map:
            c = coefficients[n]
            for c_ in c.split():
                m_ = get_map(c_)
                args.append(c_.dat(op2.READ, m_))
        if needs_cell_facets:
            assert integral_type == "cell"
            extra_args.append(m.cell_to_facets(op2.READ))

        args.extend(extra_args)
        kwargs["pass_layer_arg"] = pass_layer_arg
        try:
            with collecting_loops(True):
                yield op2.par_loop(*args, **kwargs)
        except MapValueError:
            raise RuntimeError("Integral measure does not match measure of all coefficients/arguments")

    # Must apply bcs outside loop over kernels because we may wish
    # to apply bcs to a block which is otherwise zero, and
    # therefore does not have an associated kernel.
    if bcs is not None and is_mat:
        for bc in bcs:
            if isinstance(bc, DirichletBC):
                fs = bc.function_space()
                # Evaluate this outwith a "collecting_loops" block,
                # since creation of the bc nodes actually can create a
                # par_loop.
                nodes = bc.nodes
                if len(fs) > 1:
                    raise RuntimeError(r"""Cannot apply boundary conditions to full mixed space. Did you forget to index it?""")
                shape = result_matrix.block_shape
                with collecting_loops(True):
                    for i in range(shape[0]):
                        for j in range(shape[1]):
                            # Set diagonal entries on bc nodes to 1 if the current
                            # block is on the matrix diagonal and its index matches the
                            # index of the function space the bc is defined on.
                            if i != j:
                                continue
                            if fs.component is None and fs.index is not None:
                                # Mixed, index (no ComponentFunctionSpace)
                                if fs.index == i:
                                    yield tensor[i, j].set_local_diagonal_entries(nodes)
                            elif fs.component is not None:
                                # ComponentFunctionSpace, check parent index
                                if fs.parent.index is not None:
                                    # Mixed, index doesn't match
                                    if fs.parent.index != i:
                                        continue
                                # Index matches
                                yield tensor[i, j].set_local_diagonal_entries(nodes, idx=fs.component)
                            elif fs.index is None:
                                yield tensor[i, j].set_local_diagonal_entries(nodes)
                            else:
                                raise RuntimeError("Unhandled BC case")
            elif isinstance(bc, EquationBCSplit):
                yield from _assemble(bc.f, tensor=result_matrix, bcs=bc.bcs,
                                     form_compiler_parameters=form_compiler_parameters,
                                     inverse=inverse, mat_type=mat_type,
                                     sub_mat_type=sub_mat_type,
                                     appctx=appctx,
                                     assemble_now=assemble_now,
                                     allocate_only=False,
                                     zero_tensor=False)
            else:
                raise NotImplementedError("Undefined type of bcs class provided.")

    if bcs is not None and is_vec:
        for bc in bcs:
            if isinstance(bc, DirichletBC):
                if assemble_now:
                    yield functools.partial(bc.apply, result_function)
                else:
                    yield functools.partial(bc.zero, result_function)
            elif isinstance(bc, EquationBCSplit):
                yield functools.partial(bc.zero, result_function)
                yield from _assemble(bc.f, tensor=result_function, bcs=bc.bcs,
                                     form_compiler_parameters=form_compiler_parameters,
                                     inverse=inverse, mat_type=mat_type,
                                     sub_mat_type=sub_mat_type,
                                     appctx=appctx,
                                     assemble_now=assemble_now,
                                     allocate_only=False,
                                     zero_tensor=False)
    if zero_tensor:
        if is_mat:
            # Queue up matrix assembly (after we've done all the other operations)
            yield tensor.assemble()
        if assemble_now:
            yield result
예제 #5
0
def _assemble(f,
              tensor=None,
              bcs=None,
              form_compiler_parameters=None,
              inverse=False,
              mat_type=None,
              sub_mat_type=None,
              appctx={},
              options_prefix=None,
              assemble_now=False,
              allocate_only=False,
              zero_tensor=True):
    r"""Assemble the form or Slate expression f and return a Firedrake object
    representing the result. This will be a :class:`float` for 0-forms/rank-0
    Slate tensors, a :class:`.Function` for 1-forms/rank-1 Slate tensors and
    a :class:`.Matrix` for 2-forms/rank-2 Slate tensors.

    :arg bcs: A tuple of :class`.DirichletBC`\s and/or :class`.EquationBCSplit`\s to be applied.
    :arg tensor: An existing tensor object into which the form should be
        assembled. If this is not supplied, a new tensor will be created for
        the purpose.
    :arg form_compiler_parameters: (optional) dict of parameters to pass to
        the form compiler.
    :arg inverse: (optional) if f is a 2-form, then assemble the inverse
         of the local matrices.
    :arg mat_type: (optional) type for assembled matrices, one of
        "nest", "aij", "baij", or "matfree".
    :arg sub_mat_type: (optional) type for assembled sub matrices
        inside a "nest" matrix.  One of "aij" or "baij".
    :arg appctx: Additional information to hang on the assembled
         matrix if an implicit matrix is requested (mat_type "matfree").
    :arg options_prefix: An options prefix for the PETSc matrix
        (ignored if not assembling a bilinear form).
    """
    if mat_type is None:
        mat_type = parameters.parameters["default_matrix_type"]
    if mat_type not in ["matfree", "aij", "baij", "nest"]:
        raise ValueError("Unrecognised matrix type, '%s'" % mat_type)
    if sub_mat_type is None:
        sub_mat_type = parameters.parameters["default_sub_matrix_type"]
    if sub_mat_type not in ["aij", "baij"]:
        raise ValueError("Invalid submatrix type, '%s' (not 'aij' or 'baij')",
                         sub_mat_type)

    if form_compiler_parameters:
        form_compiler_parameters = form_compiler_parameters.copy()
    else:
        form_compiler_parameters = {}
    form_compiler_parameters["assemble_inverse"] = inverse

    topology = f.ufl_domains()[0].topology
    for m in f.ufl_domains():
        # Ensure mesh is "initialised" (could have got here without
        # building a functionspace (e.g. if integrating a constant)).
        m.init()
        if m.topology != topology:
            raise NotImplementedError(
                "All integration domains must share a mesh topology.")

    for o in chain(f.arguments(), f.coefficients()):
        domain = o.ufl_domain()
        if domain is not None and domain.topology != topology:
            raise NotImplementedError(
                "Assembly with multiple meshes not supported.")

    if isinstance(f, slate.TensorBase):
        kernels = slac.compile_expression(
            f, tsfc_parameters=form_compiler_parameters)
        integral_types = [kernel.kinfo.integral_type for kernel in kernels]
    else:
        kernels = tsfc_interface.compile_form(
            f, "form", parameters=form_compiler_parameters, inverse=inverse)
        integral_types = [
            integral.integral_type() for integral in f.integrals()
        ]

        if bcs is not None:
            for bc in bcs:
                integral_types += [
                    integral.integral_type() for integral in bc.integrals()
                ]

    rank = len(f.arguments())
    is_mat = rank == 2
    is_vec = rank == 1

    if any((coeff.function_space()
            and coeff.function_space().component is not None)
           for coeff in f.coefficients()):
        raise NotImplementedError(
            "Integration of subscripted VFS not yet implemented")

    if inverse and rank != 2:
        raise ValueError("Can only assemble the inverse of a 2-form")

    zero_tensor_parloop = lambda: None

    if is_mat:
        matfree = mat_type == "matfree"
        nest = mat_type == "nest"
        if nest:
            baij = sub_mat_type == "baij"
        else:
            baij = mat_type == "baij"
        # intercept matrix-free matrices here
        if matfree:
            if inverse:
                raise NotImplementedError(
                    "Inverse not implemented with matfree")
            if tensor is None:
                result_matrix = matrix.ImplicitMatrix(
                    f,
                    bcs,
                    fc_params=form_compiler_parameters,
                    appctx=appctx,
                    options_prefix=options_prefix)
                yield lambda: result_matrix
                raise StopIteration()
            if not isinstance(tensor, matrix.ImplicitMatrix):
                raise ValueError("Expecting implicit matrix with matfree")
            tensor.assemble()
            yield lambda: tensor
            raise StopIteration()

        test, trial = f.arguments()

        map_pairs = []
        cell_domains = []
        exterior_facet_domains = []
        interior_facet_domains = []
        if tensor is None:
            # For horizontal facets of extruded meshes, the corresponding domain
            # in the base mesh is the cell domain. Hence all the maps used for top
            # bottom and interior horizontal facets will use the cell to dofs map
            # coming from the base mesh as a starting point for the actual dynamic map
            # computation.
            for integral_type in integral_types:
                if integral_type == "cell":
                    cell_domains.append(op2.ALL)
                elif integral_type == "exterior_facet":
                    exterior_facet_domains.append(op2.ALL)
                elif integral_type == "interior_facet":
                    interior_facet_domains.append(op2.ALL)
                elif integral_type == "exterior_facet_bottom":
                    cell_domains.append(op2.ON_BOTTOM)
                elif integral_type == "exterior_facet_top":
                    cell_domains.append(op2.ON_TOP)
                elif integral_type == "exterior_facet_vert":
                    exterior_facet_domains.append(op2.ALL)
                elif integral_type == "interior_facet_horiz":
                    cell_domains.append(op2.ON_INTERIOR_FACETS)
                elif integral_type == "interior_facet_vert":
                    interior_facet_domains.append(op2.ALL)
                else:
                    raise ValueError('Unknown integral type "%s"' %
                                     integral_type)

            # Used for the sparsity construction
            iteration_regions = []
            if cell_domains:
                map_pairs.append((test.cell_node_map(), trial.cell_node_map()))
                iteration_regions.append(tuple(cell_domains))
            if exterior_facet_domains:
                map_pairs.append((test.exterior_facet_node_map(),
                                  trial.exterior_facet_node_map()))
                iteration_regions.append(tuple(exterior_facet_domains))
            if interior_facet_domains:
                map_pairs.append((test.interior_facet_node_map(),
                                  trial.interior_facet_node_map()))
                iteration_regions.append(tuple(interior_facet_domains))

            map_pairs = tuple(map_pairs)
            # Construct OP2 Mat to assemble into
            fs_names = (test.function_space().name,
                        trial.function_space().name)

            try:
                sparsity = op2.Sparsity((test.function_space().dof_dset,
                                         trial.function_space().dof_dset),
                                        map_pairs,
                                        iteration_regions=iteration_regions,
                                        name="%s_%s_sparsity" % fs_names,
                                        nest=nest,
                                        block_sparse=baij)
            except SparsityFormatError:
                raise ValueError(
                    "Monolithic matrix assembly is not supported for systems with R-space blocks."
                )

            result_matrix = matrix.Matrix(f,
                                          bcs,
                                          mat_type,
                                          sparsity,
                                          numpy.float64,
                                          "%s_%s_matrix" % fs_names,
                                          options_prefix=options_prefix)
            tensor = result_matrix._M
        else:
            if isinstance(tensor, matrix.ImplicitMatrix):
                raise ValueError("Expecting matfree with implicit matrix")

            result_matrix = tensor
            tensor = tensor._M
            zero_tensor_parloop = tensor.zero

        if result_matrix.block_shape != (1, 1) and mat_type == "baij":
            raise ValueError(
                "BAIJ matrix type makes no sense for mixed spaces, use 'aij'")

        def mat(testmap, trialmap, rowbc, colbc, i, j):
            m = testmap(test.function_space()[i])
            n = trialmap(trial.function_space()[j])
            maps = (m if m else None, n if n else None)

            rlgmap, clgmap = tensor[i, j].local_to_global_maps
            V = test.function_space()[i]
            rlgmap = V.local_to_global_map(rowbc, lgmap=rlgmap)
            V = trial.function_space()[j]
            clgmap = V.local_to_global_map(colbc, lgmap=clgmap)
            if rowbc is None:
                rowbc = []
            if colbc is None:
                colbc = []
            unroll = any(bc.function_space().component is not None
                         for bc in chain(rowbc, colbc) if bc is not None)
            return tensor[i, j](op2.INC,
                                maps,
                                lgmaps=(rlgmap, clgmap),
                                unroll_map=unroll)

        result = lambda: result_matrix
        if allocate_only:
            yield result
            raise StopIteration()
    elif is_vec:
        test = f.arguments()[0]
        if tensor is None:
            result_function = function.Function(test.function_space())
            tensor = result_function.dat
        else:
            result_function = tensor
            tensor = result_function.dat
            zero_tensor_parloop = tensor.zero

        def vec(testmap, i):
            _testmap = testmap(test.function_space()[i])
            return tensor[i](op2.INC, _testmap if _testmap else None)

        result = lambda: result_function
    else:
        # 0-forms are always scalar
        if tensor is None:
            tensor = op2.Global(1, [0.0])
        else:
            raise ValueError("Can't assemble 0-form into existing tensor")
        result = lambda: tensor.data[0]

    coefficients = f.coefficients()
    domains = f.ufl_domains()

    # These will be used to correctly interpret the "otherwise"
    # subdomain
    all_integer_subdomain_ids = defaultdict(list)
    for k in kernels:
        if k.kinfo.subdomain_id != "otherwise":
            all_integer_subdomain_ids[k.kinfo.integral_type].append(
                k.kinfo.subdomain_id)
    for k, v in all_integer_subdomain_ids.items():
        all_integer_subdomain_ids[k] = tuple(sorted(v))

    # In collecting loops mode, we collect the loops, and assume the
    # boundary conditions provided are the ones we want.  It therefore
    # is only used inside residual and jacobian assembly.

    if zero_tensor:
        yield zero_tensor_parloop
    for indices, kinfo in kernels:
        kernel = kinfo.kernel
        integral_type = kinfo.integral_type
        domain_number = kinfo.domain_number
        subdomain_id = kinfo.subdomain_id
        coeff_map = kinfo.coefficient_map
        pass_layer_arg = kinfo.pass_layer_arg
        needs_orientations = kinfo.oriented
        needs_cell_facets = kinfo.needs_cell_facets
        needs_cell_sizes = kinfo.needs_cell_sizes

        m = domains[domain_number]
        subdomain_data = f.subdomain_data()[m]
        # Find argument space indices
        if is_mat:
            i, j = indices
        elif is_vec:
            i, = indices
        else:
            assert len(indices) == 0

        sdata = subdomain_data.get(integral_type, None)
        if integral_type != 'cell' and sdata is not None:
            raise NotImplementedError(
                "subdomain_data only supported with cell integrals.")

        # Extract block from tensor and test/trial spaces
        # FIXME Ugly variable renaming required because functions are not
        # lexical closures in Python and we're writing to these variables
        if is_mat:
            if bcs is not None:
                tsbc = list(bc for bc in chain(*bcs))
                if result_matrix.block_shape > (1, 1):
                    trbc = [
                        bc for bc in tsbc if bc.function_space_index() == j
                        and isinstance(bc, DirichletBC)
                    ]
                    tsbc = [
                        bc for bc in tsbc if bc.function_space_index() == i
                    ]
                else:
                    trbc = [bc for bc in tsbc if isinstance(bc, DirichletBC)]
            else:
                tsbc = []
                trbc = []

        # Now build arguments for the par_loop
        kwargs = {}
        # Some integrals require non-coefficient arguments at the
        # end (facet number information).
        extra_args = []
        # Decoration for applying to matrix maps in extruded case
        decoration = None
        itspace = m.measure_set(integral_type, subdomain_id,
                                all_integer_subdomain_ids)
        if integral_type == "cell":
            itspace = sdata or itspace
            if subdomain_id not in ["otherwise", "everywhere"
                                    ] and sdata is not None:
                raise ValueError("Cannot use subdomain data and subdomain_id")

            def get_map(x):
                return x.cell_node_map()

        elif integral_type in ("exterior_facet", "exterior_facet_vert"):
            extra_args.append(m.exterior_facets.local_facet_dat(op2.READ))

            def get_map(x):
                return x.exterior_facet_node_map()

        elif integral_type in ("exterior_facet_top", "exterior_facet_bottom"):
            # In the case of extruded meshes with horizontal facet integrals, two
            # parallel loops will (potentially) get created and called based on the
            # domain id: interior horizontal, bottom or top.
            decoration = {
                "exterior_facet_top": op2.ON_TOP,
                "exterior_facet_bottom": op2.ON_BOTTOM
            }[integral_type]
            kwargs["iterate"] = decoration

            def get_map(x):
                return x.cell_node_map()

        elif integral_type in ("interior_facet", "interior_facet_vert"):
            extra_args.append(m.interior_facets.local_facet_dat(op2.READ))

            def get_map(x):
                return x.interior_facet_node_map()

        elif integral_type == "interior_facet_horiz":
            decoration = op2.ON_INTERIOR_FACETS
            kwargs["iterate"] = decoration

            def get_map(x):
                return x.cell_node_map()

        else:
            raise ValueError("Unknown integral type '%s'" % integral_type)

        # Output argument
        if is_mat:
            tensor_arg = mat(lambda s: get_map(s), lambda s: get_map(s), tsbc,
                             trbc, i, j)
        elif is_vec:
            tensor_arg = vec(lambda s: get_map(s), i)
        else:
            tensor_arg = tensor(op2.INC)

        coords = m.coordinates
        args = [
            kernel, itspace, tensor_arg,
            coords.dat(op2.READ, get_map(coords))
        ]
        if needs_orientations:
            o = m.cell_orientations()
            args.append(o.dat(op2.READ, get_map(o)))
        if needs_cell_sizes:
            o = m.cell_sizes
            args.append(o.dat(op2.READ, get_map(o)))

        for n in coeff_map:
            c = coefficients[n]
            for c_ in c.split():
                m_ = get_map(c_)
                args.append(c_.dat(op2.READ, m_))
        if needs_cell_facets:
            assert integral_type == "cell"
            extra_args.append(m.cell_to_facets(op2.READ))

        args.extend(extra_args)
        kwargs["pass_layer_arg"] = pass_layer_arg
        try:
            with collecting_loops(True):
                yield op2.par_loop(*args, **kwargs)
        except MapValueError:
            raise RuntimeError(
                "Integral measure does not match measure of all coefficients/arguments"
            )

    # Must apply bcs outside loop over kernels because we may wish
    # to apply bcs to a block which is otherwise zero, and
    # therefore does not have an associated kernel.
    if bcs is not None and is_mat:
        for bc in bcs:
            if isinstance(bc, DirichletBC):
                fs = bc.function_space()
                # Evaluate this outwith a "collecting_loops" block,
                # since creation of the bc nodes actually can create a
                # par_loop.
                nodes = bc.nodes
                if len(fs) > 1:
                    raise RuntimeError(
                        r"""Cannot apply boundary conditions to full mixed space. Did you forget to index it?"""
                    )
                shape = result_matrix.block_shape
                with collecting_loops(True):
                    for i in range(shape[0]):
                        for j in range(shape[1]):
                            # Set diagonal entries on bc nodes to 1 if the current
                            # block is on the matrix diagonal and its index matches the
                            # index of the function space the bc is defined on.
                            if i != j:
                                continue
                            if fs.component is None and fs.index is not None:
                                # Mixed, index (no ComponentFunctionSpace)
                                if fs.index == i:
                                    yield tensor[
                                        i, j].set_local_diagonal_entries(nodes)
                            elif fs.component is not None:
                                # ComponentFunctionSpace, check parent index
                                if fs.parent.index is not None:
                                    # Mixed, index doesn't match
                                    if fs.parent.index != i:
                                        continue
                                # Index matches
                                yield tensor[i, j].set_local_diagonal_entries(
                                    nodes, idx=fs.component)
                            elif fs.index is None:
                                yield tensor[i, j].set_local_diagonal_entries(
                                    nodes)
                            else:
                                raise RuntimeError("Unhandled BC case")
            elif isinstance(bc, EquationBCSplit):
                yield from _assemble(
                    bc.f,
                    tensor=result_matrix,
                    bcs=bc.bcs,
                    form_compiler_parameters=form_compiler_parameters,
                    inverse=inverse,
                    mat_type=mat_type,
                    sub_mat_type=sub_mat_type,
                    appctx=appctx,
                    assemble_now=assemble_now,
                    allocate_only=False,
                    zero_tensor=False)
            else:
                raise NotImplementedError(
                    "Undefined type of bcs class provided.")

    if bcs is not None and is_vec:
        for bc in bcs:
            if isinstance(bc, DirichletBC):
                if assemble_now:
                    yield functools.partial(bc.apply, result_function)
                else:
                    yield functools.partial(bc.zero, result_function)
            elif isinstance(bc, EquationBCSplit):
                yield functools.partial(bc.zero, result_function)
                yield from _assemble(
                    bc.f,
                    tensor=result_function,
                    bcs=bc.bcs,
                    form_compiler_parameters=form_compiler_parameters,
                    inverse=inverse,
                    mat_type=mat_type,
                    sub_mat_type=sub_mat_type,
                    appctx=appctx,
                    assemble_now=assemble_now,
                    allocate_only=False,
                    zero_tensor=False)
    if zero_tensor:
        if is_mat:
            # Queue up matrix assembly (after we've done all the other operations)
            yield tensor.assemble()
        if assemble_now:
            yield result
예제 #6
0
    def thunk(bcs):
        if collect_loops:
            loops.append(zero_tensor)
        else:
            zero_tensor()
        for indices, (kernel, integral_type, needs_orientations, subdomain_id, domain_number, coeff_map, needs_cell_facets) in kernels:
            m = domains[domain_number]
            subdomain_data = f.subdomain_data()[m]
            # Find argument space indices
            if is_mat:
                i, j = indices
            elif is_vec:
                i, = indices
            else:
                assert len(indices) == 0

            sdata = subdomain_data.get(integral_type, None)
            if integral_type != 'cell' and sdata is not None:
                raise NotImplementedError("subdomain_data only supported with cell integrals.")

            # Extract block from tensor and test/trial spaces
            # FIXME Ugly variable renaming required because functions are not
            # lexical closures in Python and we're writing to these variables
            if is_mat and result_matrix.block_shape > (1, 1):
                tsbc = []
                trbc = []
                # Unwind ComponentFunctionSpace to check for matching BCs
                for bc in bcs:
                    fs = bc.function_space()
                    if fs.component is not None:
                        fs = fs.parent
                    if fs.index == i:
                        tsbc.append(bc)
                    if fs.index == j:
                        trbc.append(bc)
            elif is_mat:
                tsbc, trbc = bcs, bcs

            # Now build arguments for the par_loop
            kwargs = {}
            # Some integrals require non-coefficient arguments at the
            # end (facet number information).
            extra_args = []
            # Decoration for applying to matrix maps in extruded case
            decoration = None
            itspace = m.measure_set(integral_type, subdomain_id,
                                    all_integer_subdomain_ids)
            if integral_type == "cell":
                itspace = sdata or itspace

                if subdomain_id not in ["otherwise", "everywhere"] and \
                   sdata is not None:
                    raise ValueError("Cannot use subdomain data and subdomain_id")

                def get_map(x, bcs=None, decoration=None):
                    return x.cell_node_map(bcs)

            elif integral_type in ("exterior_facet", "exterior_facet_vert"):
                extra_args.append(m.exterior_facets.local_facet_dat(op2.READ))

                def get_map(x, bcs=None, decoration=None):
                    return x.exterior_facet_node_map(bcs)

            elif integral_type in ("exterior_facet_top", "exterior_facet_bottom"):
                # In the case of extruded meshes with horizontal facet integrals, two
                # parallel loops will (potentially) get created and called based on the
                # domain id: interior horizontal, bottom or top.
                decoration = {"exterior_facet_top": op2.ON_TOP,
                              "exterior_facet_bottom": op2.ON_BOTTOM}[integral_type]
                kwargs["iterate"] = decoration

                def get_map(x, bcs=None, decoration=None):
                    map_ = x.cell_node_map(bcs)
                    if decoration is not None:
                        return op2.DecoratedMap(map_, decoration)
                    return map_

            elif integral_type in ("interior_facet", "interior_facet_vert"):
                extra_args.append(m.interior_facets.local_facet_dat(op2.READ))

                def get_map(x, bcs=None, decoration=None):
                    return x.interior_facet_node_map(bcs)

            elif integral_type == "interior_facet_horiz":
                decoration = op2.ON_INTERIOR_FACETS
                kwargs["iterate"] = decoration

                def get_map(x, bcs=None, decoration=None):
                    map_ = x.cell_node_map(bcs)
                    if decoration is not None:
                        return op2.DecoratedMap(map_, decoration)
                    return map_

            else:
                raise ValueError("Unknown integral type '%s'" % integral_type)

            # Output argument
            if is_mat:
                tensor_arg = mat(lambda s: get_map(s, tsbc, decoration),
                                 lambda s: get_map(s, trbc, decoration),
                                 i, j)
            elif is_vec:
                tensor_arg = vec(lambda s: get_map(s), i)
            else:
                tensor_arg = tensor(op2.INC)

            coords = m.coordinates
            args = [kernel, itspace, tensor_arg,
                    coords.dat(op2.READ, get_map(coords))]
            if needs_orientations:
                o = m.cell_orientations()
                args.append(o.dat(op2.READ, get_map(o)))
            for n in coeff_map:
                c = coefficients[n]
                for c_ in c.split():
                    args.append(c_.dat(op2.READ, get_map(c_)))
            if needs_cell_facets:
                assert integral_type == "cell"
                extra_args.append(m.cell_to_facet_map(op2.READ))

            args.extend(extra_args)
            try:
                with collecting_loops(collect_loops):
                    loops.append(op2.par_loop(*args, **kwargs))
            except MapValueError:
                raise RuntimeError("Integral measure does not match measure of all coefficients/arguments")

        # Must apply bcs outside loop over kernels because we may wish
        # to apply bcs to a block which is otherwise zero, and
        # therefore does not have an associated kernel.
        if bcs is not None and is_mat:
            for bc in bcs:
                fs = bc.function_space()
                # Evaluate this outwith a "collecting_loops" block,
                # since creation of the bc nodes actually can create a
                # par_loop.
                nodes = bc.nodes
                if len(fs) > 1:
                    raise RuntimeError("""Cannot apply boundary conditions to full mixed space. Did you forget to index it?""")
                shape = result_matrix.block_shape
                with collecting_loops(collect_loops):
                    for i in range(shape[0]):
                        for j in range(shape[1]):
                            # Set diagonal entries on bc nodes to 1 if the current
                            # block is on the matrix diagonal and its index matches the
                            # index of the function space the bc is defined on.
                            if i != j:
                                continue
                            if fs.component is None and fs.index is not None:
                                # Mixed, index (no ComponentFunctionSpace)
                                if fs.index == i:
                                    loops.append(tensor[i, j].set_local_diagonal_entries(nodes))
                            elif fs.component is not None:
                                # ComponentFunctionSpace, check parent index
                                if fs.parent.index is not None:
                                    # Mixed, index doesn't match
                                    if fs.parent.index != i:
                                        continue
                                # Index matches
                                loops.append(tensor[i, j].set_local_diagonal_entries(nodes, idx=fs.component))
                            elif fs.index is None:
                                loops.append(tensor[i, j].set_local_diagonal_entries(nodes))
                            else:
                                raise RuntimeError("Unhandled BC case")
        if bcs is not None and is_vec:
            if len(bcs) > 0 and collect_loops:
                raise NotImplementedError("Loop collection not handled in this case")
            for bc in bcs:
                bc.apply(result_function)
        if is_mat:
            # Queue up matrix assembly (after we've done all the other operations)
            loops.append(tensor.assemble())
        return result()