예제 #1
0
    def emit_unpack_instruction(self, *, loop_indices=None):
        pack = self.pack(loop_indices)
        if self.access is READ:
            return ()
        else:
            if self.interior_horizontal:
                _shape = (2,)
            else:
                _shape = (1,)
            offset = 0
            for p in self.packs:
                shape = _shape + p.map_.shape[1:] + p.outer.shape[1:]
                mi = MultiIndex(*(Index(e) for e in shape))
                rvalue, mask = p._rvalue(mi, loop_indices)
                extents = [numpy.prod(shape[i+1:], dtype=numpy.int32) for i in range(len(shape))]
                index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False)) for i, e in zip(mi, extents)], Literal(IntType.type(0), casting=False))
                indices = MultiIndex(Sum(index, Literal(IntType.type(offset), casting=False)),)
                rhs = Indexed(pack, indices)
                offset += numpy.prod(shape, dtype=numpy.int32)

                if self.access in {INC, MIN, MAX}:
                    op = {INC: Sum,
                          MIN: Min,
                          MAX: Max}[self.access]
                    rhs = op(rvalue, rhs)

                acc = Accumulate(UnpackInst(), rvalue, rhs)
                if mask is None:
                    yield acc
                else:
                    yield When(mask, acc)
예제 #2
0
 def layer_extents(self):
     if self.iteration_region == ON_BOTTOM:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(0))),
             Literal(IntType.type(1)))
     elif self.iteration_region == ON_TOP:
         start = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-2)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-1)))
     elif self.iteration_region == ON_INTERIOR_FACETS:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-2)))
     elif self.iteration_region == ALL:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-1)))
     else:
         raise ValueError("Unknown iteration region")
     return (Materialise(PackInst(), start, MultiIndex()),
             Materialise(PackInst(), end, MultiIndex()))
예제 #3
0
    def pack(self, loop_indices=None):
        if hasattr(self, "_pack"):
            return self._pack

        flat_shape = numpy.sum(
            tuple(
                numpy.prod(p.map_.shape[1:] + p.outer.shape[1:])
                for p in self.packs))

        if self.interior_horizontal:
            _shape = (2, )
            flat_shape *= 2
        else:
            _shape = (1, )

        if self.access in {INC, WRITE}:
            val = Zero((), self.dtype)
            multiindex = MultiIndex(Index(flat_shape))
            self._pack = Materialise(PackInst(), val, multiindex)
        elif self.access in {READ, RW, MIN, MAX}:
            multiindex = MultiIndex(Index(flat_shape))
            val = Zero((), self.dtype)
            expressions = []
            offset = 0
            for p in self.packs:
                shape = _shape + p.map_.shape[1:] + p.outer.shape[1:]
                mi = MultiIndex(*(Index(e) for e in shape))
                expr, mask = p._rvalue(mi, loop_indices)
                extents = [
                    numpy.prod(shape[i + 1:], dtype=numpy.int32)
                    for i in range(len(shape))
                ]
                index = reduce(Sum, [
                    Product(i, Literal(IntType.type(e), casting=False))
                    for i, e in zip(mi, extents)
                ], Literal(IntType.type(0), casting=False))
                indices = MultiIndex(
                    Sum(index, Literal(IntType.type(offset), casting=False)), )
                offset += numpy.prod(shape, dtype=numpy.int32)
                if mask is not None:
                    expr = When(mask, expr)
                expressions.append(expr)
                expressions.append(indices)

            self._pack = Materialise(PackInst(), val, multiindex, *expressions)
        else:
            raise ValueError(
                "Don't know how to initialise pack for '%s' access" %
                self.access)

        return self._pack
예제 #4
0
    def indexed(self, multiindex, layer=None):
        n, i, f = multiindex
        if layer is not None and self.offset is not None:
            # For extruded mesh, prefetch the indirections for each map, so that they don't
            # need to be recomputed. Different f values need to be treated separately.
            key = f.extent
            if key is None:
                key = 1
            if key not in self.prefetch:
                bottom_layer, _ = self.layer_bounds
                offset_extent, = self.offset.shape
                j = Index(offset_extent)
                base = Indexed(self.values, (n, j))
                if f.extent:
                    k = Index(f.extent)
                else:
                    k = Index(1)
                offset = Sum(
                    Sum(layer, Product(Literal(numpy.int32(-1)),
                                       bottom_layer)), k)
                offset = Product(offset, Indexed(self.offset, (j, )))
                self.prefetch[key] = Materialise(PackInst(), Sum(base, offset),
                                                 MultiIndex(k, j))

            return Indexed(self.prefetch[key], (f, i)), (f, i)
        else:
            assert f.extent == 1 or f.extent is None
            base = Indexed(self.values, (n, i))
            return base, (f, i)
예제 #5
0
    def __init__(self, map_, interior_horizontal, layer_bounds,
                 values=None, offset=None, unroll=False):
        self.variable = map_.iterset._extruded and not map_.iterset.constant_layers
        self.unroll = unroll
        self.layer_bounds = layer_bounds
        self.interior_horizontal = interior_horizontal
        self.prefetch = {}
        if values is not None:
            raise RuntimeError
            self.values = values
            if map_.offset is not None:
                assert offset is not None
            self.offset = offset
            return

        offset = map_.offset
        shape = (None, ) + map_.shape[1:]
        values = Argument(shape, dtype=map_.dtype, pfx="map")
        if offset is not None:
            if len(set(map_.offset)) == 1:
                offset = Literal(offset[0], casting=True)
            else:
                offset = NamedLiteral(offset, name=values.name + "_offset")

        self.values = values
        self.offset = offset
예제 #6
0
 def top_layer(self):
     if self.iteration_region == ON_BOTTOM:
         return Materialise(PackInst(),
                            Sum(Indexed(self._layers_array, (self._layer_index, FixedIndex(1))),
                                Literal(IntType.type(-1))),
                            MultiIndex())
     else:
         _, end = self.layer_extents
         return end
예제 #7
0
 def indexed_vector(self, n, shape, layer=None):
     shape = self.shape[1:] + shape
     if self.interior_horizontal:
         shape = (2, ) + shape
     else:
         shape = (1, ) + shape
     f, i, j = (Index(e) for e in shape)
     base, (f, i) = self.indexed((n, i, f), layer=layer)
     init = Sum(Product(base, Literal(numpy.int32(j.extent))), j)
     pack = Materialise(PackInst(), init, MultiIndex(f, i, j))
     multiindex = tuple(Index(e) for e in pack.shape)
     return Indexed(pack, multiindex), multiindex
예제 #8
0
    def emit_unpack_instruction(self, *,
                                loop_indices=None):
        pack = self.pack(loop_indices=loop_indices)
        mixed_to_local = []
        local_to_global = []
        roffset = 0
        for row in self.packs:
            coffset = 0
            for p in row:
                rshape, cshape = p.shapes
                pack_ = p.pack(loop_indices=loop_indices, only_declare=True)
                rindices = tuple(Index(e) for e in rshape)
                cindices = tuple(Index(e) for e in cshape)
                indices = MultiIndex(*rindices, *cindices)
                lvalue = Indexed(pack_, indices)
                rextents = [numpy.prod(rshape[i+1:], dtype=numpy.int32) for i in range(len(rshape))]
                cextents = [numpy.prod(cshape[i+1:], dtype=numpy.int32) for i in range(len(cshape))]
                flat_row_index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False))
                                              for i, e in zip(rindices, rextents)],
                                        Literal(IntType.type(0), casting=False))
                flat_col_index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False))
                                              for i, e in zip(cindices, cextents)],
                                        Literal(IntType.type(0), casting=False))

                flat_index = MultiIndex(Sum(flat_row_index, Literal(IntType.type(roffset), casting=False)),
                                        Sum(flat_col_index, Literal(IntType.type(coffset), casting=False)))
                rvalue = Indexed(pack, flat_index)
                # Copy from local mixed element tensor into non-mixed
                mixed_to_local.append(Accumulate(PreUnpackInst(), lvalue, rvalue))
                # And into global matrix.
                local_to_global.extend(p.emit_unpack_instruction(loop_indices=loop_indices))
                coffset += numpy.prod(cshape, dtype=numpy.int32)
            roffset += numpy.prod(rshape, dtype=numpy.int32)
        yield from iter(mixed_to_local)
        yield from iter(local_to_global)
예제 #9
0
    def indexed(self, multiindex, layer=None):
        n, i, f = multiindex
        if layer is not None and self.offset is not None:
            # For extruded mesh, prefetch the indirections for each map, so that they don't
            # need to be recomputed.
            # First prefetch the base map (not dependent on layers)
            base_key = None
            if base_key not in self.prefetch:
                j = Index()
                base = Indexed(self.values, (n, j))
                self.prefetch[base_key] = Materialise(PackInst(), base, MultiIndex(j))

            base = self.prefetch[base_key]

            # Now prefetch the extruded part of the map (inside the layer loop).
            # This is necessary so loopy DTRT for MatSetValues
            # Different f values need to be treated separately.
            key = f.extent
            if key is None:
                key = 1
            if key not in self.prefetch:
                bottom_layer, _ = self.layer_bounds
                k = Index(f.extent if f.extent is not None else 1)
                offset = Sum(Sum(layer, Product(Literal(numpy.int32(-1)), bottom_layer)), k)
                j = Index()
                # Inline map offsets where all entries are identical.
                if self.offset.shape == ():
                    offset = Product(offset, self.offset)
                else:
                    offset = Product(offset, Indexed(self.offset, (j,)))
                base = Indexed(base, (j, ))
                self.prefetch[key] = Materialise(PackInst(), Sum(base, offset), MultiIndex(k, j))

            return Indexed(self.prefetch[key], (f, i)), (f, i)
        else:
            assert f.extent == 1 or f.extent is None
            base = Indexed(self.values, (n, i))
            return base, (f, i)
예제 #10
0
 def _mask(self, map_):
     if self.needs_mask:
         return Comparison(">=", map_, Literal(numpy.int32(0)))
     else:
         return None