예제 #1
0
def main(options):
    out = options.outfile
    chromat_in = options.infile
    traml_in = options.traml_in
    trafo_in = options.trafo_in

    pp = pyopenms.MRMTransitionGroupPicker()


    metabolomics = False
    # this is an important weight for RT-deviation -- the larger the value, the less importance will be given to exact RT matches
    # for proteomics data it tends to be a good idea to set it to the length of
    # the RT space (e.g. for 100 second RT space, set it to 100)
    rt_normalization_factor = 100.0

    pp_params = pp.getDefaults();
    pp_params.setValue("PeakPickerMRM:remove_overlapping_peaks", options.remove_overlapping_peaks, '')
    pp_params.setValue("PeakPickerMRM:method", options.method, '')
    if (metabolomics):
        # Need to change those for metabolomics and very short peaks!
        pp_params.setValue("PeakPickerMRM:signal_to_noise", 0.01, '')
        pp_params.setValue("PeakPickerMRM:peak_width", 0.1, '')
        pp_params.setValue("PeakPickerMRM:gauss_width", 0.1, '')
        pp_params.setValue("resample_boundary", 0.05, '')
        pp_params.setValue("compute_peak_quality", "true", '')
    pp.setParameters(pp_params)

    scorer = pyopenms.MRMFeatureFinderScoring()
    scoring_params = scorer.getDefaults();
    # Only report the top 5 features
    scoring_params.setValue("stop_report_after_feature", 5, '')
    scoring_params.setValue("rt_normalization_factor", rt_normalization_factor, '')
    scorer.setParameters(scoring_params);

    chromatograms = pyopenms.MSExperiment()
    fh = pyopenms.FileHandler()
    fh.loadExperiment(chromat_in, chromatograms)
    targeted = pyopenms.TargetedExperiment();
    tramlfile = pyopenms.TraMLFile();
    tramlfile.load(traml_in, targeted);

    trafoxml = pyopenms.TransformationXMLFile()
    trafo = pyopenms.TransformationDescription()
    if trafo_in is not None:
        model_params = pyopenms.Param()
        model_params.setValue("symmetric_regression", "false", "", [])
        model_type = "linear"
        trafoxml.load(trafo_in, trafo, True)
        trafo.fitModel(model_type, model_params);


    light_targeted = pyopenms.LightTargetedExperiment();
    pyopenms.OpenSwathDataAccessHelper().convertTargetedExp(targeted, light_targeted)
    output = algorithm(chromatograms, light_targeted, pp, scorer, trafo)

    pyopenms.FeatureXMLFile().store(out, output);
예제 #2
0
    def setUp(self):

        lt = pyopenms.LightTransition()
        lt.charge = 2
        lt.transition_name = b"X"
        lt.peptide_ref = b"Y"
        lt.library_intensity = 12.0
        lt.product_mz = 22.0
        self.lt = lt

        lm = pyopenms.LightModification()
        lm.location = 13
        lm.unimod_id = b"ID"

        self.lm = lm

        lpep = pyopenms.LightPeptide()
        lpep.rt = 12.0
        lpep.charge = 2
        lpep.sequence = b"SEQ"
        lpep.protein_ref = b"REF"

        lpep.modifications = [lm]
        self.lpep = lpep

        lprot = pyopenms.LightProtein()
        lprot.id = b"1234"
        lprot.sequence = b"ABC"

        self.lprot = lprot

        lte = pyopenms.LightTargetedExperiment()
        lte.peptides = [self.lpep]
        lte.proteins = [self.lprot]
        lte.transitions = [self.lt]

        self.lte = lte