def test_gen_sensfunc(): # Load a random spectrum for the sensitivity function sfile = data_path('spec1d_J0025-0312_KASTr_2015Jan23T025323.85.fits') specobjs = arload.load_specobj(sfile) # Settings, etc. arutils.dummy_settings() settings.argflag['run']['spectrograph'] = 'shane_kast_blue' settings.argflag['reduce']['masters']['setup'] = 'C_01_aa' settings.spect['arc'] = {} settings.spect['arc']['index'] = [[0]] fitsdict = arutils.dummy_fitsdict() slf = arutils.dummy_self() slf._msstd[0]['RA'] = '05:06:36.6' slf._msstd[0]['DEC'] = '52:52:01.0' # Generate slf._sensfunc = arflx.generate_sensfunc(slf, 4, [specobjs], fitsdict) # Save try: os.mkdir('MF_shane_kast_blue') except FileExistsError: pass armasters.save_sensfunc(slf, 'C_01_aa') # Test assert isinstance(slf._sensfunc, dict) assert isinstance(slf._sensfunc['wave_min'], Quantity)
def test_save1d_hdf5(): """ save1d to FITS and HDF5 """ # Dummy self slf = arut.dummy_self() fitsdict = arut.dummy_fitsdict(nfile=1, spectrograph='none') # specobj slf._specobjs = [] slf._specobjs.append([]) slf._specobjs[0].append([mk_specobj(objid=455), mk_specobj(flux=3., objid=555)]) # Write to HDF5 arsv.save_1d_spectra_hdf5(slf, fitsdict)
def test_save1d_fits(): """ save1d to FITS and HDF5 """ arut.dummy_settings() fitsdict = arut.dummy_fitsdict(nfile=10, spectrograph='shane_kast_blue', directory=data_path('')) # Dummy self slf = arut.dummy_self() slf._specobjs = [] slf._specobjs.append([]) slf._specobjs[0].append([mk_specobj()]) # Write to FITS arsv.save_1d_spectra_fits(slf, fitsdict)
def test_setup_param(): """ Run the parameter setup script Returns ------- """ # Initialize some settings arut.dummy_settings() # Load Dummy self slf = arut.dummy_self() settings.argflag['run']['spectrograph'] = 'shane_kast_blue' settings.spect['arc'] = {} settings.spect['arc']['index'] = [[0]] fitsdict = arut.dummy_fitsdict() # Run arcparm = pyarc.setup_param(slf, 0, 1, fitsdict) for key in ['llist', 'disp', 'wvmnx']: assert key in arcparm
def test_save2d_fits(): arut.dummy_settings() # Dummy self slf = arut.dummy_self() fitsdict = arut.dummy_fitsdict(nfile=1, spectrograph='none', directory=data_path('')) fitsdict['filename'] = np.array(['b1.fits.gz']) # Settings settings.argflag['run']['directory']['science'] = data_path('') settings.argflag['reduce']['masters']['setup'] = 'A_01_aa' # Fill with dummy images dum = np.ones((100,100)) slf._sciframe[0] = dum slf._modelvarframe[0] = dum * 2 slf._bgframe[0] = dum + 0.1 slf._basename = 'test' slf._idx_sci[0] = 0 # Call arsv.save_2d_images(slf, fitsdict) # Read and test head0 = pyfits.getheader(data_path('spec2d_test.fits')) assert head0['PYPCNFIG'] == 'A' assert head0['PYPCALIB'] == 'aa' assert 'PYPIT' in head0['PIPELINE']
def fitsdict(): return arutils.dummy_fitsdict()