def test_Ensemble_data(): """tests to check data from an ensemble""" # Test that the ensemble of two identical models # behalves like twice a single model. # Only for the independent (ie. diagonal) case # Note: this test would fail if a fixed contact_matrix # is passed which happens to be the identity matrix # The difference is that when specified as independent # each model is booted independently # If a contact matrix is specified, then the boot goal # is the combined total of all models. So there will be a different starting point. test_a = Model.open_file(path_model_2) test_a.name = 'test_a' test_b = Model.open_file(path_model_2) test_b.name = 'test_b' test_b.parameters['alpha_0'].set_value(0.7) reference = Model.open_file(path_model_2) reference.name = 'reference' off_diag = Parameter('off_diagonal', 0.1, parameter_min=0., parameter_max=1., description='off diagonal element of contact matrix') off_diags = [off_diag] test_ensemble = Ensemble('test_ensemble', reference) test_ensemble.upload_models([test_a, test_b]) test_ensemble.define_cross_transmission('infection cycle', 'infected', 'susceptible', 'total', 'contagious', 'alpha', contact_type='simple', contact=off_diags) n_days = 100 norm_day = 50 test_ensemble.reset() test_ensemble.evolve_expectations(norm_day) for key in test_ensemble.populations: pop = test_ensemble.populations[key] nu = pop.history[norm_day] pop.history[norm_day] = int(round(nu)) pop.scale_future(1., expectations=False) for model_name in test_ensemble.models: model = test_ensemble.models[model_name] for pop_name in model.populations: pop = model.populations[pop_name] nu = pop.history[norm_day] pop.history[norm_day] = int(round(nu)) pop.scale_future(1., expectations=False) test_ensemble.generate_data(n_days, norm_day) for pop_name in test_ensemble.populations: pop = test_ensemble.populations[pop_name] if pop.show_sim: ens_hist = test_ensemble.populations[pop_name].history
def test_point_estimate_local_death(): start_day = 80 end_day = 100 ref_2 = Model.open_file( '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm') sim_2 = Model.open_file( '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm') # do fit of recover_frac for par_name in ref_2.parameters: par = ref_2.parameters[par_name] par.set_fixed() for par_name in ['recover_frac']: par = ref_2.parameters[par_name] par.set_variable(None, None) sim_2.reset() sim_2.generate_data(end_day) optimizer = Optimizer(ref_2, 'total deaths', sim_2.populations['deaths'].history, [start_day, end_day], cumul_reset=True) optimizer.reset_variables() popt, pcov = optimizer.fit() iii = 1
def test_point_estimates_repeated(): start_day = 12 end_day = 60 ref_2 = Model.open_file(path_model_2_2) sim_2 = Model.open_file(path_model_2_2) # do fit of alpha_0, alpha_1, cont_0 par_names = ['alpha_0', 'alpha_1', 'cont_0'] sums = {} sum2s = {} for par_name in par_names: par = ref_2.parameters[par_name] par.set_variable(None, None) sums[par_name] = 0. sum2s[par_name] = 0. n_rep = 10 fit_stat_list = [] for i in range(n_rep): sim_2.reset() sim_2.generate_data(end_day) optimizer = Optimizer(ref_2, 'total reported', sim_2.populations['reported'].history, [start_day, end_day]) optimizer.reset_variables() popt, pcov = optimizer.fit() fit_stat_list.append(optimizer.fit_statistics) for par_name in par_names: value = ref_2.parameters[par_name].get_value() sums[par_name] += value sum2s[par_name] += value**2 ass_std = {} ass_std['alpha_0'] = 0.03 ass_std['alpha_1'] = 0.01 ass_std['cont_0'] = 10. means = {} std = {} for par_name in par_names: means[par_name] = sums[par_name] / n_rep std[par_name] = np.sqrt(sum2s[par_name] / n_rep - means[par_name]**2) assert std[par_name] < ass_std[par_name] truth = ref_2.parameters[par_name].initial_value assert np.abs((means[par_name] - truth) / std[par_name] / np.sqrt(1. * n_rep)) < 3. ndof = fit_stat_list[0]['ndof'] chi2_list = [fit_stat_list[i]['chi2'] for i in range(n_rep)] chi2_mean = np.mean(chi2_list) assert np.abs(chi2_mean - ndof) < 8. acor_list = [fit_stat_list[i]['acor'] for i in range(n_rep)] acor_mean = np.mean(acor_list) assert np.abs(acor_mean) < 0.2
def test_Ensemble_properties_different(): """tests to ensure the properties of Ensemble with different sub models""" # Test that the ensemble of two identical models # behalves like twice a single model. # Only for the independent (ie. diagonal) case # Note: this test would fail if a fixed contact_matrix # is passed which happens to be the identity matrix # The difference is that when specified as independent # each model is booted independently # If a contact matrix is specified, then the boot goal # is the combined total of all models. So there will be a different starting point. test_a = Model.open_file(path_model_2) test_a.name = 'test_a' test_b = Model.open_file(path_model_2) test_b.name = 'test_b' test_b.parameters['alpha_0'].set_value(0.7) test_c = Model.open_file(path_model_2) test_c.name = 'test_c' test_d = Model.open_file(path_model_2) test_d.name = 'test_d' test_d.parameters['alpha_0'].set_value(0.7) reference = Model.open_file(path_model_2) reference.name = 'reference' test_ensemble = Ensemble('test_ensemble', reference) test_ensemble.upload_models([test_a, test_b]) test_ensemble.define_cross_transmission('infection cycle', 'infected', 'susceptible', 'total', 'contagious', 'alpha', contact_type='diagonal') n_days = 100 test_c.reset() test_c.evolve_expectations(n_days) test_d.reset() test_d.evolve_expectations(n_days) test_ensemble.reset() test_ensemble.evolve_expectations(n_days) for pop_name in test_ensemble.populations: pop = test_ensemble.populations[pop_name] if pop.show_sim: ens_hist = test_ensemble.populations[pop_name].history tc_hist = test_c.populations[pop_name].history td_hist = test_d.populations[pop_name].history for i in range(len(ens_hist)): ratio = ens_hist[i] / (tc_hist[i] + td_hist[i]) assert np.abs(ratio - 1.) < 0.01
def test_Ensemble_properties_identical(): """tests to ensure the properties of Ensemble""" # Test that the ensemble of two identical models # behalves like twice a single model. # independent of the contact matrix test_a = Model.open_file(path_model_2) test_a.name = 'test_a' test_b = Model.open_file(path_model_2) test_b.name = 'test_b' reference = Model.open_file(path_model_2) reference.name = 'reference' single = Model.open_file(path_model_2) single.name = 'single' test_ensemble = Ensemble('test_ensemble', reference) test_ensemble.upload_models([test_a, test_b]) contacts = [ [[1., 0.0], [0.0, 1.]], [[1., 1.0], [1.0, 1.]], [[1., 0.5], [0.7, 1.]], ] for contact in contacts: test_ensemble.define_cross_transmission('infection cycle', 'infected', 'susceptible', 'total', 'contagious', 'alpha', contact_type='fixed', contact=contact) n_days = 100 test_ensemble.reset() test_ensemble.evolve_expectations(n_days) single.reset() single.evolve_expectations(n_days) for pop_name in test_ensemble.populations: pop = test_ensemble.populations[pop_name] if pop.show_sim: ens_hist = test_ensemble.populations[pop_name].history single_hist = single.populations[pop_name].history for i in range(len(ens_hist)): ratio = ens_hist[i] / single_hist[i] assert np.abs(ratio - 2.) < 0.001
def test_interval_maker(): hub_date = datetime.date(2020, 4, 1) my_IntervalMaker = IntervalMaker("USA", hub_date) categories = ['case', 'death', 'hospitalization'] n_period_dict = {'case': 5, 'death': 5, 'hospitalization': 30} n_rep = 10 scale_std_alpha = 2. model = Model.open_file(path_model_2_6) if 'interval_maker' not in model.user_dict: model.user_dict['interval_maker'] = {} model.user_dict['interval_maker']['smearing parameters'] = [ 'non_icu_hosp_frac', 'recover_frac' ] model.parameters['non_icu_hosp_frac'].std_estimator = 0.002 model.parameters['recover_frac'].set_value(0.99) model.parameters['recover_frac'].std_estimator = 0.01 my_IntervalMaker.get_quantiles(categories, n_period_dict, model, n_rep=n_rep, scale_std_alpha=scale_std_alpha, back_up=21, fall_back=True, rescale=True) for category in categories: my_IntervalMaker.append_user_dict(category, model) i = 1
def test_model_2_9(): ref_2_9 = Model.open_file(path_model_2_9) ref_2_9.parameters['alpha_0'].set_value(0.35) ref_2_9.transitions['outbreak_v'].enabled = True ref_2_9.parameters['outbreak_v_time'].set_value(30) ref_2_9.parameters['outbreak_v_number'].set_value(2.) ref_2_9.parameters['alpha_0_v'].set_value(0.35) ref_2_9.transitions['outbreak_w'].enabled = True ref_2_9.parameters['outbreak_w_time'].set_value(60) ref_2_9.parameters['outbreak_w_number'].set_value(4.) ref_2_9.parameters['alpha_0_w'].set_value(0.45) ref_2_9.transitions['vaccination_1'].enabled = True ref_2_9.parameters['vacc_time_1'].set_value(80) ref_2_9.parameters['vacc_number_1'].set_value(1000.) # ref_2_9.reset() # ref_2_9.evolve_expectations(200) ref_2_9.reset() ref_2_9.generate_data(200) i = 1
def test_point_estimate_daily(): def delta(cumul): diff = [] for i in range(1, len(cumul)): diff.append(cumul[i] - cumul[i - 1]) # first daily value is repeated since val(t0-1) is unknown diff.insert(0, diff[0]) return diff start_day = 12 end_day = 60 ref_2 = Model.open_file(path_model_2_2) sim_2 = Model.open_file(path_model_2_2) # do fit of alpha_0, alpha_1, cont_0, trans_rate_1_time for par_name in ['alpha_0', 'alpha_1', 'cont_0']: par = ref_2.parameters[par_name] par.set_variable(None, None) par = ref_2.parameters['trans_rate_1_time'] par.set_variable(None, None) par.set_min(13) par.set_max(19) sim_2.reset() sim_2.generate_data(end_day) daily_data = delta(sim_2.populations['reported'].history) daily_data[47] = np.inf optimizer = Optimizer(ref_2, 'daily reported', daily_data, [start_day, end_day], skip_data='42,45:48') optimizer.reset_variables() scan_dict = optimizer.i_fit() assert ref_2.parameters['trans_rate_1_time'].get_value() in [15, 16, 17] par = ref_2.parameters['trans_rate_1_time'] par.set_fixed() popt, pcov = optimizer.fit() assert np.abs(ref_2.parameters['alpha_0'].get_value() - ref_2.parameters['alpha_0'].initial_value) < 0.06 assert np.abs(ref_2.parameters['alpha_1'].get_value() - ref_2.parameters['alpha_1'].initial_value) < 0.02 assert np.abs(ref_2.parameters['cont_0'].get_value() - ref_2.parameters['cont_0'].initial_value) < 20.
def test_Model_properties(): """tests to ensure the properties of Model""" ref_model_1 = Model.open_file(path_model_4_1) ref_model_2 = Model.open_file(path_model_4_1) for test_model in [ref_model_1, ref_model_2]: # check simple scaling of initial contagious population # Will not be exact due to bootstrap EPS = 0.01 cont_0 = test_model.parameters['cont_0'].get_value() test_model.reset() test_model.evolve_expectations(200) n_reported1 = test_model.populations['reported'].history[-1] assert test_model.populations['contagious_o'].history[-1] < 10. test_model.parameters['cont_0'].set_value(2 * cont_0) test_model.reset() test_model.evolve_expectations(200) n_reported2 = test_model.populations['reported'].history[-1] assert np.abs(n_reported2 - n_reported1 * 2) < EPS * n_reported1 * 2 # check that the mean of many data runs is near expectation ref_model = Model.open_file(path_model_2) ref_model.reset() n_days = 60 ref_model.evolve_expectations(n_days) sim_models = [] n_rep = 100 for i in range(n_rep): sim_model = copy.deepcopy(ref_model) sim_model.reset() sim_model.generate_data(n_days) sim_models.append(sim_model) for pop_name in ref_model.populations: pop = ref_model.populations[pop_name] if pop.show_sim: results = [] for sim_model in sim_models: results.append(sim_model.populations[pop_name].history[-1]) mean = np.mean(np.array(results)) std = np.std(np.array(results)) error = std / np.sqrt(1. * n_rep) expect = ref_model.populations[pop_name].history[-1] assert np.abs(expect - mean) < 8. * error
def test_max_mult(): ref_2_5 = Model.open_file(path_model_2_5) ref_2_5.transitions['vaccination'].enabled = True ref_2_5.parameters['vaccination_number'].set_value(800000.) ref_2_5.parameters['vaccination_time'].set_value(5) ref_2_5.reset() ref_2_5.boot(expectations=True) ref_2_5.evolve_expectations(200) i = 1
def test_trajectory(): ref_2 = Model.open_file(path_model_2_2) trajectory = Trajectory(ref_2, 'contagious', 'trans_rate_1', [0.03, 0.75]) alpha_c = trajectory.get_alpha(0.) delta_1 = trajectory.get_delta(0.1) delta_2 = trajectory.get_delta(0.2) assert np.abs(alpha_c - 0.152) < 0.001 assert np.abs(trajectory.get_delta(alpha_c)) < 0.00001 assert np.abs(delta_1 + 0.0513) < 0.0001 assert np.abs(delta_2 - 0.0389) < 0.0001
def test_model_2_5(): ref_2_5 = Model.open_file(path_model_2_5) ref_2_3 = Model.open_file(path_model_2_3) #ref_2_5.transitions['vaccination'].enabled = True #ref_2_5.parameters['vaccination_number'].set_value(10000.) ref_2_5.reset() ref_2_5.evolve_expectations(200) ref_2_3.reset() ref_2_3.evolve_expectations(200) for pop_name in ref_2_3.populations: pop = ref_2_3.populations[pop_name] if pop.show_sim: print(pop_name) hist_2_3 = ref_2_3.populations[pop_name].history hist_2_5 = ref_2_5.populations[pop_name].history for i in range(len(hist_2_3)): if hist_2_3[i] > 0: ratio = hist_2_5[i] / hist_2_3[i] assert np.abs(ratio - 1.) < 0.001
def test_point_estimate_skip_zeros(): start_day = 12 end_day = 60 ref_2 = Model.open_file(path_model_2_2) sim_2 = Model.open_file(path_model_2_2) # do fit of alpha_1, trans_rate_1_time for par_name in ['alpha_1']: par = ref_2.parameters[par_name] par.set_variable(None, None) par = ref_2.parameters['trans_rate_1_time'] par.set_variable(None, None) par.set_min(13) par.set_max(19) sim_2.reset() rn_dict = sim_2.populations['reported'].get_report_noise() rn_dict['report_days'].set_value(7) sim_2.generate_data(end_day) sim_2.populations['reported'].history[47] = np.inf optimizer = Optimizer(ref_2, 'total reported', sim_2.populations['reported'].history, [start_day, end_day], cumul_reset=True, skip_data='42,45:48', skip_zeros=True) #optimizer = Optimizer(ref_2, 'total reported', sim_2.populations['reported'].history, [start_day, end_day], # cumul_reset=True, skip_zeros=False) optimizer.reset_variables() scan_dict = optimizer.i_fit() assert ref_2.parameters['trans_rate_1_time'].get_value() in [15, 16, 17] par = ref_2.parameters['trans_rate_1_time'] par.set_fixed() popt, pcov = optimizer.fit() assert np.abs(ref_2.parameters['alpha_1'].get_value() - ref_2.parameters['alpha_1'].initial_value) < 0.02
def test_model_2_8(): ref_2_8 = Model.open_file(path_model_2_8) ref_2_8.transitions['outbreak_v'].enabled = True ref_2_8.parameters['outbreak_v_time'].set_value(30) ref_2_8.parameters['outbreak_v_number'].set_value(2.) ref_2_8.parameters['alpha_0'].set_value(0.35) # ref_2_8.reset() # ref_2_8.evolve_expectations(200) ref_2_8.reset() ref_2_8.generate_data(200) i = 1
def test_model_2_7(): ref_2_7 = Model.open_file(path_model_2_7) ref_2_7.transitions['vaccination_1'].enabled = True ref_2_7.transitions['vaccination_2'].enabled = True ref_2_7.parameters['vacc_time_2'].set_value(80) ref_2_7.parameters['vacc_number_2'].set_value(-5.) # ref_2_7.reset() # ref_2_7.evolve_expectations(200) ref_2_7.reset() ref_2_7.generate_data(200) i = 1
def test_model_ks_4_2(): ks_4_2 = Model.open_file('ks_4_2_0116_problem.pypm') ks_4_2.reset() ks_4_2.evolve_expectations(720) recent_oe_ve = [[ks_4_2.populations['os_susceptible'].history[i], ks_4_2.populations['ve_susceptible'].history[i]] \ for i in range(695,700)] ks_4_2.reset() ks_4_2.parameters['ve_frac'].set_value(0.801) ks_4_2.evolve_expectations(720) recent_oe_ve2 = [[ks_4_2.populations['os_susceptible'].history[i], ks_4_2.populations['ve_susceptible'].history[i]] \ for i in range(695,700)] i = 1
def test_class_Delay(): """tests to ensure the behaviour class Delay""" test_model = Model('test_model') EPS = 0.1 mean = 10. std_dev = 4. half_width = float(std_dev * np.sqrt(12.) / 2.) k_vals = [1, 2, 3] for delay_type in ['norm', 'uniform', 'erlang', 'gamma']: k_s = [1] if delay_type == 'erlang': k_s = k_vals for k in k_s: delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.), 'half_width': Parameter('hw', half_width, parameter_min=-100., parameter_max=100.), 'k': Parameter('k', k, parameter_type='int', parameter_min=1, parameter_max=100) } for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) # The delay is created after the model: since it is not associated with a connector, the model # does not know to call its update method. (The model does not have stand alone delays.) test_delay = Delay('test_delay', delay_type, delay_parameters=delay_pars, model=test_model) distribution = test_delay.future_expectations sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - 1.) < EPS est_mean = sum_tp assert np.abs(est_mean - mean) < EPS est_sigma = np.sqrt(sum_ttp - sum_tp * sum_tp) if delay_type != 'erlang': assert np.abs(est_sigma - std_dev) < EPS else: assert np.abs(est_sigma - mean / np.sqrt(1. * k)) < EPS
def upload_model_files(self, model_filenames: list): if not isinstance(model_filenames, list): raise TypeError( 'Error in upload_model_files: argument must be a list of .pypm filenames' ) for model_file in model_filenames: if not isinstance(model_file, str): raise TypeError( 'Error in upload_model_files: argument must be a list of .pypm filenames' ) for model_filename in model_filenames: self.__add_model(Model.open_file(model_filename))
def test_Model_copy_values_from(): ref_model_2 = Model.open_file(path_model_2) alberta_model_2 = Model.open_file('ab_2_0514.pypm') ref_model_2.copy_values_from(alberta_model_2) ref_model_2.reset() ref_model_2.evolve_expectations(80) alberta_model_2.reset() alberta_model_2.evolve_expectations(80) for pop_name in ref_model_2.populations: pop = ref_model_2.populations[pop_name] # Bug fixed in ref_model_2, not in alberta_model_2 accounts for small differences in icu if 'vent' not in pop.name and 'in_' not in pop.name: ref_hist = pop.history alberta_hist = alberta_model_2.populations[pop_name].history for i in range(len(ref_hist)): if np.abs(ref_hist[i] - alberta_hist[i]) > 0.0001: print(pop.name, i, ref_hist[i], alberta_hist[i], np.abs(ref_hist[i] - alberta_hist[i])) assert np.abs(ref_hist[i] - alberta_hist[i]) < 0.001
def test_class_Population(): """tests to ensure the behaviour class Population""" init_value = 100 test_pop = Population('test population', init_value, description='For testing populations', hidden=True, color='black', show_sim=False, report_noise=False, report_noise_par=None) assert test_pop.history[0] == init_value model = Model.open_file(path_model_2_8) test_pop.set_model(model) incoming = 10 test_pop.update_future_fast(incoming) assert test_pop.future[0] == incoming test_pop.do_time_step() assert test_pop.history[1] == init_value + incoming assert len(test_pop.future) == 0 or test_pop.future == 0 scale_factor = 0.5 test_pop.scale_history(scale_factor) assert test_pop.history[0] == init_value * scale_factor assert test_pop.history[1] == (init_value + incoming) * scale_factor # check that noise in reporting makes sense # Expectations are not effected - data should be # but the total reported should be the same after all reporting complete noise_factor = Parameter('noise_factor', 0.3) backlog_factor = Parameter('backlog_factor', 0.8) # restart - back to initial value for expectations in [True, False]: test_pop.reset() future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] future_sum = np.sum(np.array(future)) test_pop.set_report_noise(True, noise_factor, backlog_factor, None) test_pop.future = future for i in range(len(future) + 5): test_pop.do_time_step(expectations=expectations) assert test_pop.history[-1] == init_value + future_sum report_days = Parameter('report_days', 127, parameter_min=-7, parameter_max=127, parameter_type='int') for report_day_value in [127, 63, -1, -2, -5, -7]: report_days.set_value(report_day_value) test_pop.reset() future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] future_sum = np.sum(np.array(future)) test_pop.set_report_noise(True, noise_factor, backlog_factor, report_days) test_pop.future = future for i in range(len(future) + 5): test_pop.do_time_step(expectations=expectations) assert test_pop.history[-1] == init_value + future_sum
def test_sim_gof_local(): start_day = 12 end_day = 60 ref_2 = Model.open_file(path_model_2_2) sim_2 = Model.open_file(path_model_2_2) # do fit of alpha_0, alpha_1, cont_0 par_names = ['alpha_1'] for par_name in par_names: par = ref_2.parameters[par_name] par.set_variable(None, None) sim_2.reset() sim_2.generate_data(end_day) sim_2.populations['reported'].history[47] = np.inf optimizer = Optimizer(ref_2, 'total reported', sim_2.populations['reported'].history, [start_day, end_day], cumul_reset=True, skip_data='42,45:48') optimizer.reset_variables() popt, pcov = optimizer.fit() fit_statistics = optimizer.fit_statistics optimizer.calc_chi2s = False optimizer.calc_chi2f = True n_rep = 10 optimizer.calc_sim_gof(n_rep) fit_stat_list = optimizer.fit_stat_list ndof = fit_stat_list[0]['ndof'] chi2_list = [fit_stat_list[i]['chi2'] for i in range(n_rep)] chi2_mean = np.mean(chi2_list) assert np.abs(chi2_mean - ndof) < 8.E6 acor_list = [fit_stat_list[i]['acor'] for i in range(n_rep)] acor_mean = np.mean(acor_list) assert np.abs(acor_mean) < 0.2
def test_class_Chain(): """tests to ensure the behaviour class Chain""" test_model = Model('test_model') from_pop = Population('from_pop', 0.) to_pop = Population('to_pop', 0.) pop_a = Population('pop_a', 0.) pop_b = Population('pop_b', 0.) start = 100000 from_pop.future = [start] mean = 10. sigma = 2. delay_pars = {'mean': Parameter('mean', mean, parameter_min=0.1, parameter_max=100.), 'sigma': Parameter('sigma', sigma, parameter_min=0.1, parameter_max=1000.)} delay = Delay('delay', 'norm', delay_pars, test_model) frac = 0.8 fraction = Parameter('frac', frac) chain = [] chain.append(Propagator('prop_0', from_pop, pop_a, fraction, delay)) chain.append(Propagator('prop_1', pop_a, pop_b, fraction, delay)) test_chain = Chain('test_chain', from_pop, to_pop, chain, fraction, delay, test_model) test_model.add_connector(test_chain) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_chain.update_expectation, test_chain.update_data]: EPS = 0.02 if func == test_chain.update_data: EPS = 0.2 to_pop.reset() pop_a.reset() pop_b.reset() func() for pop in [to_pop, pop_b]: distribution = pop.future total = start * (1. - frac ** 2) * frac ave = mean std_dev = sigma if pop == pop_b: total = start * frac ** 2 ave = 2. * mean std_dev = np.sqrt(2.) * sigma sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - total) < EPS * total est_mean = sum_tp / total assert np.abs(est_mean - ave) < EPS * ave est_sigma = np.sqrt(sum_ttp / total - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev
def test_model_ny_4_2(): ny_4_2 = Model.open_file( '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm') ny_4_2.reset() ny_4_2.evolve_expectations(40) num = ny_4_2.populations['reported'].history[-1] cont_0 = ny_4_2.parameters['cont_0'].get_value() ny_4_2.parameters['cont_0'].set_value(2. * cont_0) ny_4_2.reset() ny_4_2.evolve_expectations(40) num2 = ny_4_2.populations['reported'].history[-1] if (ny_4_2.populations['contagious_o'].initial_value != ny_4_2.parameters['cont_0']): ny_4_2.populations['contagious_o'].initial_value = ny_4_2.parameters[ 'cont_0'] print('changed') ny_4_2.reset() ny_4_2.evolve_expectations(40) num3 = ny_4_2.populations['reported'].history[-1] i = 1
def test_class_Injector(): """tests to ensure the behaviour class Injector""" test_model = Model('test_model') number = 50. inject = Parameter('inject', number, parameter_min=0., parameter_max=1000.) time = 5 trans_time = Parameter('time', time, parameter_type='int', parameter_min=0, parameter_max=1000) to_pop = Population('to_pop', 0) test_injector = Injector('injector', 'rel_days', trans_time, to_pop, inject, model=test_model) test_model.add_transition(test_injector) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) to_pop.reset() test_injector.take_action() assert to_pop.future[0] == number assert np.abs(test_injector.trigger_step - time / time_step) < 0.1
def test_class_Multiplier(): """tests to ensure the behaviour class Multiplier""" test_model = Model('test_model') EPS = 1. n1 = 50. n2 = 20. n3 = 2. scale = 0.1 f_pops = [Population('f1_pop', n1), Population('f2_pop', n2), Population('f3_pop', n3)] to_pop = Population('to_pop', 0.) scale_par = Parameter('alpha', scale) delay = Delay('fast', 'fast') test_multiplier = Multiplier('test_multiplier', f_pops, to_pop, scale_par, delay, model=test_model) test_model.add_connector(test_multiplier) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) # expectation: expected = n1 * n2 / n3 * scale * time_step to_pop.reset() test_multiplier.set_distribution('poisson', None) test_multiplier.update_expectation() assert to_pop.future[0] == expected # Poisson n_rep = 1000 n_list = [] for i in range(n_rep): to_pop.reset() test_multiplier.update_data() n_list.append(to_pop.future[0]) assert np.abs(np.mean(n_list) - expected) < EPS assert np.abs(np.std(n_list) - np.sqrt(expected)) < EPS # Negative binomial p_nb = 0.2 nbinom_par = Parameter('nb', p_nb) test_multiplier.set_distribution('nbinom', nbinom_par) n_rep = 1000 n_list = [] for i in range(n_rep): to_pop.reset() test_multiplier.update_data() n_list.append(to_pop.future[0]) assert np.abs(np.mean(n_list) - expected) < EPS assert np.abs(np.std(n_list) - np.sqrt(expected / p_nb)) < EPS
def test_class_Splitter(): """tests to ensure the behaviour class Splitter""" test_model = Model('test_model') start = 100000 from_pop = Population('from_pop', 0) from_pop.future = [start] to_pops = [Population('to_pop1', 0.), Population('to_pop2', 0.)] fracs = [0.4, 0.6] fraction = Parameter('frac', fracs[0]) mean = 10. std_dev = 4. delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.) } test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model) test_split = Splitter('test_prop', from_pop, to_pops, [fraction], test_delay) test_model.add_connector(test_split) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_split.update_expectation, test_split.update_data]: EPS = 0.01 if func == test_split.update_data: EPS = 0.1 to_pops[0].reset() to_pops[1].reset() func() total = 0 for i in range(2): distribution = to_pops[i].future frac = fracs[i] sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 total += sum_p assert np.abs(sum_p - start * frac) < EPS * start * frac est_mean = sum_tp / (start * frac) assert np.abs(est_mean - mean) < EPS * mean est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev assert np.abs(total - start) < 0.1
def test_linear_modifier(): ref_2_4 = Model.open_file(path_model_2_4) trajectory = Trajectory(ref_2_4, 'contagious', 'trans_rate_1', [0.02, 2.0]) alpha_c = trajectory.get_alpha(0.) ref_2_4.parameters['alpha_1'].set_value(alpha_c) ref_2_4.parameters['to_icu_delay_mean'].set_value(0.5) ref_2_4.parameters['to_icu_delay_sigma'].set_value(0.5) ref_2_4.transitions['mod_icu_frac'].enabled = True ref_2_4.parameters['icu_frac_time'].set_value(60) ref_2_4.parameters['icu_frac_0'].set_value(0.1) # the meaning of this parameter changed to the end_value # ref_2_4.parameters['icu_frac_slope'].set_value(0.01) ref_2_4.parameters['icu_frac_slope'].set_value(0.2) ref_2_4.parameters['icu_frac_nstep'].set_value(10) ref_2_4.reset() ref_2_4.evolve_expectations(100) pop_hist = ref_2_4.populations['icu admissions'].history assert np.abs(pop_hist[55] - pop_hist[54] - pop_hist[50] + pop_hist[49]) < 0.01 assert np.abs(pop_hist[75] - pop_hist[74] - pop_hist[70] + pop_hist[69]) < 0.1 assert np.abs((pop_hist[75] - pop_hist[74]) / (pop_hist[55] - pop_hist[54]) - 2.) < 0.1
def test_class_Propagator(): """tests to ensure the behaviour class Propagator""" test_model = Model('test_model') start = 100000 from_pop = Population('from_pop', 0) from_pop.future = [start] to_pop = Population('to_pop', 0.) frac = 0.4 fraction = Parameter('frac', frac) mean = 10. std_dev = 4. delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.) } test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model) test_prop = Propagator('test_prop', from_pop, to_pop, fraction, test_delay) test_model.add_connector(test_prop) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_prop.update_expectation, test_prop.update_data]: EPS = 0.01 if func == test_prop.update_data: EPS = 0.1 to_pop.reset() func() distribution = to_pop.future sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - start * frac) < EPS * start * frac est_mean = sum_tp / (start * frac) assert np.abs(est_mean - mean) < EPS * mean est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev
def test_class_Modifier(): """tests to ensure the behaviour class Modifier""" test_model = Model('test_model') mod_time = Parameter('time', 5, parameter_type='int', parameter_min=0, parameter_max=1000) par_val = 0.3 par_0_val = 0.5 par_1_val = 0.7 parameter = Parameter('par', par_val) parameter_0 = Parameter('par_0', par_0_val) parameter_1 = Parameter('par_1', par_1_val) test_modifier = Modifier('test_modifier', 'rel_days', mod_time, parameter, parameter_0, parameter_1, model=test_model) test_model.add_transition(test_modifier) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) parameter.reset() assert parameter.get_value() == par_val test_modifier.take_action() assert parameter.get_value() == par_1_val test_modifier.reset() assert parameter.get_value() == par_0_val assert np.abs(test_modifier.trigger_step - 5 / time_step) < 0.1
def test_mixing_evolve_data(): ref_2_9 = Model.open_file(path_model_2_9) ref_2_9.reset() ref_2_9.generate_data(100, from_step=0, data_start=50) reported = ref_2_9.populations['reported'].history i = 1