예제 #1
0
    def test_dist_mixture_batched(self):
        dist_sample_shape_correct = [2, 1]
        dist_1 = Normal([[0], [1]], [[0.1], [1]])
        dist_2 = Normal([[2], [5]], [[0.1], [1]])
        dist_3 = Normal([[3], [10]], [[0.1], [1]])
        dist_means_correct = [[0.7], [8.1]]
        dist_stddevs_correct = [[1.10454], [3.23883]]
        dist_log_probs_correct = [[-23.473], [-3.06649]]

        dist = Mixture([dist_1, dist_2, dist_3], probs=[[0.7, 0.2, 0.1], [0.1, 0.2, 0.7]])

        dist_sample_shape = list(dist.sample().size())
        dist_empirical = Empirical([dist.sample() for i in range(empirical_samples)])
        dist_means = util.to_numpy(dist.mean)
        dist_means_empirical = util.to_numpy(dist_empirical.mean)
        dist_stddevs = util.to_numpy(dist.stddev)
        dist_stddevs_empirical = util.to_numpy(dist_empirical.stddev)
        dist_log_probs = util.to_numpy(dist.log_prob(dist_means_correct))

        util.debug('dist_sample_shape', 'dist_sample_shape_correct', 'dist_means', 'dist_means_empirical', 'dist_means_correct', 'dist_stddevs', 'dist_stddevs_empirical', 'dist_stddevs_correct', 'dist_log_probs', 'dist_log_probs_correct')

        self.assertEqual(dist_sample_shape, dist_sample_shape_correct)
        self.assertTrue(np.allclose(dist_means, dist_means_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_means_empirical, dist_means_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_stddevs, dist_stddevs_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_stddevs_empirical, dist_stddevs_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_log_probs, dist_log_probs_correct, atol=0.1))
예제 #2
0
    def test_dist_mixture(self):
        dist_sample_shape_correct = [1]
        dist_1 = Normal(0, 0.1)
        dist_2 = Normal(2, 0.1)
        dist_3 = Normal(3, 0.1)
        dist_means_correct = [0.7]
        dist_stddevs_correct = [1.10454]
        dist_log_probs_correct = [-23.473]

        dist = Mixture([dist_1, dist_2, dist_3], probs=[0.7, 0.2, 0.1])

        dist_sample_shape = list(dist.sample().size())
        dist_empirical = Empirical([dist.sample() for i in range(empirical_samples)])
        dist_means = util.to_numpy(dist.mean)
        dist_means_empirical = util.to_numpy(dist_empirical.mean)
        dist_stddevs = util.to_numpy(dist.stddev)
        dist_stddevs_empirical = util.to_numpy(dist_empirical.stddev)
        dist_log_probs = util.to_numpy(dist.log_prob(dist_means_correct))

        # print(dist.log_prob([2,2]))
        util.debug('dist_sample_shape', 'dist_sample_shape_correct', 'dist_means', 'dist_means_empirical', 'dist_means_correct', 'dist_stddevs', 'dist_stddevs_empirical', 'dist_stddevs_correct', 'dist_log_probs', 'dist_log_probs_correct')

        self.assertEqual(dist_sample_shape, dist_sample_shape_correct)
        self.assertTrue(np.allclose(dist_means, dist_means_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_means_empirical, dist_means_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_stddevs, dist_stddevs_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_stddevs_empirical, dist_stddevs_correct, atol=0.1))
        self.assertTrue(np.allclose(dist_log_probs, dist_log_probs_correct, atol=0.1))