예제 #1
0
class RemoteModelSetDefaultsAndAddressesTestCase(unittest.TestCase):
    def setUp(self):
        server_address = 'ipc://@RemoteModelSetDefaultsAndAddresses_' + str(
            uuid.uuid4())
        docker_client = docker.from_env()
        self._docker_container = docker_client.containers.run(
            'pyprob/pyprob_cpp',
            '/home/pyprob_cpp/build/pyprob_cpp/test_set_defaults_and_addresses {}'
            .format(server_address),
            network='host',
            detach=True)
        self._model = RemoteModel(server_address)

    def tearDown(self):
        self._model.close()
        self._docker_container.kill()

    def test_model_remote_set_defaults_and_addresses_prior(self):
        samples = 1000
        prior_mean_correct = 1
        prior_stddev_correct = 3.882074  # Estimate from 100k samples

        prior = self._model.prior_results(samples)
        prior_mean = float(prior.mean)
        prior_stddev = float(prior.stddev)
        util.eval_print('samples', 'prior_mean', 'prior_mean_correct',
                        'prior_stddev', 'prior_stddev_correct')

        self.assertAlmostEqual(prior_mean, prior_mean_correct, places=0)
        self.assertAlmostEqual(prior_stddev, prior_stddev_correct, places=0)

    def test_model_remote_set_defaults_and_addresses_addresses(self):
        addresses_controlled_correct = [
            '[forward()+0x252]__Normal__1', '[forward()+0x252]__Normal__2',
            '[forward()+0xbf1]__Normal__2'
        ]
        addresses_all_correct = [
            '[forward()+0x252]__Normal__1', '[forward()+0x252]__Normal__2',
            '[forward()+0xbf1]__Normal__1', '[forward()+0xbf1]__Normal__2',
            '[forward()+0x1329]__Normal__1', '[forward()+0x1329]__Normal__2',
            '[forward()+0x1a2e]__Normal__1'
        ]

        trace = next(self._model._trace_generator())
        addresses_controlled = [s.address for s in trace.variables_controlled]
        addresses_all = [s.address for s in trace.variables]

        util.eval_print('addresses_controlled', 'addresses_controlled_correct',
                        'addresses_all', 'addresses_all_correct')

        self.assertEqual(addresses_controlled, addresses_controlled_correct)
        self.assertEqual(addresses_all, addresses_all_correct)
예제 #2
0
class GaussianWithUnknownMeanTestCase(unittest.TestCase):
    def setUp(self):
        server_address = 'ipc://@RemoteModelGaussianWithUnknownMean_' + str(uuid.uuid4())
        docker_client = docker.from_env()
        self._docker_container = docker_client.containers.run('pyprob/pyprob_cpp', '/home/pyprob_cpp/build/pyprob_cpp/test_gum {}'.format(server_address), network='host', detach=True)
        self._model = RemoteModel(server_address)

    def tearDown(self):
        self._model.close()
        self._docker_container.kill()

    def test_inference_remote_gum_posterior_importance_sampling(self):
        samples = importance_sampling_samples
        true_posterior = Normal(7.25, math.sqrt(1/1.2))
        posterior_mean_correct = float(true_posterior.mean)
        posterior_stddev_correct = float(true_posterior.stddev)
        prior_mean_correct = 1.
        prior_stddev_correct = math.sqrt(5)
        posterior_effective_sample_size_min = samples * 0.005

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING, observe={'obs0': 8, 'obs1': 9})
        add_importance_sampling_duration(time.time() - start)

        posterior_mean = float(posterior.mean)
        posterior_mean_unweighted = float(posterior.unweighted().mean)
        posterior_stddev = float(posterior.stddev)
        posterior_stddev_unweighted = float(posterior.unweighted().stddev)
        posterior_effective_sample_size = float(posterior.effective_sample_size)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(true_posterior, Normal(posterior.mean, posterior.stddev)))

        util.eval_print('samples', 'prior_mean_correct', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'prior_stddev_correct', 'posterior_stddev_unweighted', 'posterior_stddev', 'posterior_stddev_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'kl_divergence')
        add_importance_sampling_kl_divergence(kl_divergence)

        self.assertAlmostEqual(posterior_mean_unweighted, prior_mean_correct, places=0)
        self.assertAlmostEqual(posterior_stddev_unweighted, prior_stddev_correct, places=0)
        self.assertAlmostEqual(posterior_mean, posterior_mean_correct, places=0)
        self.assertAlmostEqual(posterior_stddev, posterior_stddev_correct, places=0)
        self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
        self.assertLess(kl_divergence, 0.25)

    # def test_inference_remote_gum_posterior_importance_sampling_with_inference_network(self):
    #     samples = importance_sampling_samples
    #     true_posterior = Normal(7.25, math.sqrt(1/1.2))
    #     posterior_mean_correct = float(true_posterior.mean)
    #     posterior_stddev_correct = float(true_posterior.stddev)
    #     posterior_effective_sample_size_min = samples * 0.01
    #
    #     self._model.reset_inference_network()
    #     self._model.learn_inference_network(num_traces=importance_sampling_with_inference_network_training_traces, observe_embeddings={'obs0': {'dim': 256, 'depth': 1}, 'obs1': {'dim': 256, 'depth': 1}})
    #
    #     start = time.time()
    #     posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe={'obs0': 8, 'obs1': 9})
    #     add_importance_sampling_with_inference_network_duration(time.time() - start)
    #
    #     posterior_mean = float(posterior.mean)
    #     posterior_mean_unweighted = float(posterior.unweighted().mean)
    #     posterior_stddev = float(posterior.stddev)
    #     posterior_stddev_unweighted = float(posterior.unweighted().stddev)
    #     posterior_effective_sample_size = float(posterior.effective_sample_size)
    #     kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(true_posterior, Normal(posterior.mean, posterior.stddev)))
    #
    #     util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_stddev_unweighted', 'posterior_stddev', 'posterior_stddev_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'kl_divergence')
    #     add_importance_sampling_with_inference_network_kl_divergence(kl_divergence)
    #
    #     self.assertAlmostEqual(posterior_mean, posterior_mean_correct, places=0)
    #     self.assertAlmostEqual(posterior_stddev, posterior_stddev_correct, places=0)
    #     self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
    #     self.assertLess(kl_divergence, 0.25)

    def test_inference_remote_gum_posterior_lightweight_metropolis_hastings(self):
        samples = lightweight_metropolis_hastings_samples
        burn_in = lightweight_metropolis_hastings_burn_in
        true_posterior = Normal(7.25, math.sqrt(1/1.2))
        posterior_mean_correct = float(true_posterior.mean)
        posterior_stddev_correct = float(true_posterior.stddev)

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.LIGHTWEIGHT_METROPOLIS_HASTINGS, observe={'obs0': 8, 'obs1': 9})[burn_in:]
        add_lightweight_metropolis_hastings_duration(time.time() - start)

        posterior_mean = float(posterior.mean)
        posterior_stddev = float(posterior.stddev)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(true_posterior, Normal(posterior.mean, posterior.stddev)))

        util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'posterior_stddev', 'posterior_stddev_correct', 'kl_divergence')
        add_lightweight_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertAlmostEqual(posterior_mean, posterior_mean_correct, places=0)
        self.assertAlmostEqual(posterior_stddev, posterior_stddev_correct, places=0)
        self.assertLess(kl_divergence, 0.25)

    def test_inference_remote_gum_posterior_random_walk_metropolis_hastings(self):
        samples = random_walk_metropolis_hastings_samples
        burn_in = random_walk_metropolis_hastings_burn_in
        true_posterior = Normal(7.25, math.sqrt(1/1.2))
        posterior_mean_correct = float(true_posterior.mean)
        posterior_stddev_correct = float(true_posterior.stddev)

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.RANDOM_WALK_METROPOLIS_HASTINGS, observe={'obs0': 8, 'obs1': 9})[burn_in:]
        add_random_walk_metropolis_hastings_duration(time.time() - start)

        posterior_mean = float(posterior.mean)
        posterior_stddev = float(posterior.stddev)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(true_posterior, Normal(posterior.mean, posterior.stddev)))

        util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'posterior_stddev', 'posterior_stddev_correct', 'kl_divergence')
        add_random_walk_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertAlmostEqual(posterior_mean, posterior_mean_correct, places=0)
        self.assertAlmostEqual(posterior_stddev, posterior_stddev_correct, places=0)
        self.assertLess(kl_divergence, 0.25)
예제 #3
0
class BranchingTestCase(unittest.TestCase):
    def setUp(self):
        server_address = 'ipc://@RemoteModelBranching_' + str(uuid.uuid4())
        docker_client = docker.from_env()
        self._docker_container = docker_client.containers.run('pyprob/pyprob_cpp', '/home/pyprob_cpp/build/pyprob_cpp/test_branching {}'.format(server_address), network='host', detach=True)
        self._model = RemoteModel(server_address)

    def tearDown(self):
        self._model.close()
        self._docker_container.kill()

    @functools.lru_cache(maxsize=None)  # 128 by default
    def fibonacci(self, n):
        if n < 2:
            return 1

        a = 1
        fib = 1
        for i in range(n-2):
            a, fib = fib, a + fib
        return fib

    def true_posterior(self, observe=6):
        count_prior = Poisson(4)
        vals = []
        log_weights = []
        for r in range(40):
            for s in range(40):
                if 4 < float(r):
                    l = 6
                else:
                    f = self.fibonacci(3 * r)
                    l = 1 + f + count_prior.sample()
                vals.append(r)
                log_weights.append(Poisson(l).log_prob(observe) + count_prior.log_prob(r) + count_prior.log_prob(s))
        return Empirical(vals, log_weights)

    def test_inference_remote_branching_importance_sampling(self):
        samples = importance_sampling_samples
        posterior_correct = util.empirical_to_categorical(self.true_posterior(), max_val=40)

        start = time.time()
        posterior = util.empirical_to_categorical(self._model.posterior_results(samples, observe={'obs': 6}), max_val=40)
        add_importance_sampling_duration(time.time() - start)

        posterior_probs = util.to_numpy(posterior._probs)
        posterior_probs_correct = util.to_numpy(posterior_correct._probs)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(posterior, posterior_correct))

        util.eval_print('samples', 'posterior_probs', 'posterior_probs_correct', 'kl_divergence')
        add_importance_sampling_kl_divergence(kl_divergence)

        self.assertLess(kl_divergence, 0.75)
    #
    # def test_inference_remote_branching_importance_sampling_with_inference_network(self):
    #     samples = importance_sampling_samples
    #     posterior_correct = util.empirical_to_categorical(self._model.true_posterior(), max_val=40)
    #
    #     self._model.reset_inference_network()
    #     self._model.learn_inference_network(num_traces=2000, observe_embeddings={'obs': {'depth': 2, 'dim': 32}})
    #
    #     start = time.time()
    #     posterior = util.empirical_to_categorical(self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe={'obs': 6}), max_val=40)
    #     add_importance_sampling_with_inference_network_duration(time.time() - start)
    #
    #     posterior_probs = util.to_numpy(posterior._probs)
    #     posterior_probs_correct = util.to_numpy(posterior_correct._probs)
    #     kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(posterior, posterior_correct))
    #
    #     util.eval_print('samples', 'posterior_probs', 'posterior_probs_correct', 'kl_divergence')
    #     add_importance_sampling_with_inference_network_kl_divergence(kl_divergence)
    #
    #     self.assertLess(kl_divergence, 0.75)

    def test_inference_remote_branching_lightweight_metropolis_hastings(self):
        samples = importance_sampling_samples
        posterior_correct = util.empirical_to_categorical(self.true_posterior(), max_val=40)

        start = time.time()
        posterior = util.empirical_to_categorical(self._model.posterior_results(samples, inference_engine=InferenceEngine.LIGHTWEIGHT_METROPOLIS_HASTINGS, observe={'obs': 6}), max_val=40)
        add_lightweight_metropolis_hastings_duration(time.time() - start)

        posterior_probs = util.to_numpy(posterior._probs)
        posterior_probs_correct = util.to_numpy(posterior_correct._probs)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(posterior, posterior_correct))

        util.eval_print('samples', 'posterior_probs', 'posterior_probs_correct', 'kl_divergence')
        add_lightweight_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertLess(kl_divergence, 0.75)

    def test_inference_remote_branching_random_walk_metropolis_hastings(self):
        samples = importance_sampling_samples
        posterior_correct = util.empirical_to_categorical(self.true_posterior(), max_val=40)

        start = time.time()
        posterior = util.empirical_to_categorical(self._model.posterior_results(samples, inference_engine=InferenceEngine.RANDOM_WALK_METROPOLIS_HASTINGS, observe={'obs': 6}), max_val=40)
        add_random_walk_metropolis_hastings_duration(time.time() - start)

        posterior_probs = util.to_numpy(posterior._probs)
        posterior_probs_correct = util.to_numpy(posterior_correct._probs)
        kl_divergence = float(pyprob.distributions.Distribution.kl_divergence(posterior, posterior_correct))

        util.eval_print('samples', 'posterior_probs', 'posterior_probs_correct', 'kl_divergence')
        add_random_walk_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertLess(kl_divergence, 0.75)
예제 #4
0
class HiddenMarkovModelTestCase(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        self._observation = [0.9, 0.8, 0.7, 0.0, -0.025, -5.0, -2.0, -0.1, 0.0, 0.13, 0.45, 6, 0.2, 0.3, -1, -1]
        self._posterior_mean_correct = util.to_tensor([[0.3775, 0.3092, 0.3133],
                                                       [0.0416, 0.4045, 0.5539],
                                                       [0.0541, 0.2552, 0.6907],
                                                       [0.0455, 0.2301, 0.7244],
                                                       [0.1062, 0.1217, 0.7721],
                                                       [0.0714, 0.1732, 0.7554],
                                                       [0.9300, 0.0001, 0.0699],
                                                       [0.4577, 0.0452, 0.4971],
                                                       [0.0926, 0.2169, 0.6905],
                                                       [0.1014, 0.1359, 0.7626],
                                                       [0.0985, 0.1575, 0.7440],
                                                       [0.1781, 0.2198, 0.6022],
                                                       [0.0000, 0.9848, 0.0152],
                                                       [0.1130, 0.1674, 0.7195],
                                                       [0.0557, 0.1848, 0.7595],
                                                       [0.2017, 0.0472, 0.7511],
                                                       [0.2545, 0.0611, 0.6844]])
        super().__init__(*args, **kwargs)

    def setUp(self):
        server_address = 'ipc://@RemoteModelHiddenMarkovModel_' + str(uuid.uuid4())
        docker_client = docker.from_env()
        self._docker_container = docker_client.containers.run('pyprob/pyprob_cpp', '/home/pyprob_cpp/build/pyprob_cpp/test_hmm {}'.format(server_address), network='host', detach=True)
        self._model = RemoteModel(server_address)

    def tearDown(self):
        self._model.close()
        self._docker_container.kill()

    def test_inference_remote_hmm_posterior_importance_sampling(self):
        samples = importance_sampling_samples
        observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
        posterior_mean_correct = self._posterior_mean_correct
        posterior_effective_sample_size_min = samples * 0.0015

        start = time.time()
        posterior = self._model.posterior_results(samples, observe=observation)
        add_importance_sampling_duration(time.time() - start)
        posterior_mean_unweighted = posterior.unweighted().mean
        posterior_mean = posterior.mean
        posterior_effective_sample_size = float(posterior.effective_sample_size)

        print(posterior[0])
        l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
        kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))

        util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
        add_importance_sampling_kl_divergence(kl_divergence)

        self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
        self.assertLess(l2_distance, 3)
        self.assertLess(kl_divergence, 1)

    def test_inference_remote_hmm_posterior_importance_sampling_with_inference_network(self):
        samples = importance_sampling_with_inference_network_samples
        observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
        posterior_mean_correct = self._posterior_mean_correct
        posterior_effective_sample_size_min = samples * 0.03

        self._model.reset_inference_network()
        self._model.learn_inference_network(num_traces=importance_sampling_with_inference_network_training_traces, observe_embeddings={'obs{}'.format(i): {'depth': 2, 'dim': 16} for i in range(len(observation))})

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe=observation)
        add_importance_sampling_with_inference_network_duration(time.time() - start)
        posterior_mean_unweighted = posterior.unweighted().mean
        posterior_mean = posterior.mean
        posterior_effective_sample_size = float(posterior.effective_sample_size)

        l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
        kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))

        util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
        add_importance_sampling_with_inference_network_kl_divergence(kl_divergence)

        self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
        self.assertLess(l2_distance, 3)
        self.assertLess(kl_divergence, 1)

    def test_inference_remote_hmm_posterior_lightweight_metropolis_hastings(self):
        samples = lightweight_metropolis_hastings_samples
        burn_in = lightweight_metropolis_hastings_burn_in
        observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
        posterior_mean_correct = self._posterior_mean_correct

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.LIGHTWEIGHT_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
        add_lightweight_metropolis_hastings_duration(time.time() - start)
        posterior_mean = posterior.mean

        l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
        kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))

        util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
        add_lightweight_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertLess(l2_distance, 3)
        self.assertLess(kl_divergence, 1)

    def test_inference_remote_hmm_posterior_random_walk_metropolis_hastings(self):
        samples = lightweight_metropolis_hastings_samples
        burn_in = lightweight_metropolis_hastings_burn_in
        observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
        posterior_mean_correct = self._posterior_mean_correct

        start = time.time()
        posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.RANDOM_WALK_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
        add_random_walk_metropolis_hastings_duration(time.time() - start)
        posterior_mean = posterior.mean

        l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
        kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))

        util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
        add_random_walk_metropolis_hastings_kl_divergence(kl_divergence)

        self.assertLess(l2_distance, 3)
        self.assertLess(kl_divergence, 1)
예제 #5
0
class RemoteModelDistributionsTestCase(unittest.TestCase):
    def setUp(self):
        server_address = 'ipc://@RemoteModelDistributions_' + str(uuid.uuid4())
        docker_client = docker.from_env()
        self._docker_container = docker_client.containers.run(
            'pyprob/pyprob_cpp',
            '/home/pyprob_cpp/build/pyprob_cpp/test_distributions {}'.format(
                server_address),
            network='host',
            detach=True)
        self._model = RemoteModel(server_address)

    def tearDown(self):
        self._model.close()
        self._docker_container.kill()

    def test_distributions_remote(self):
        num_samples = 4000
        prior_normal_mean_correct = Normal(1.75, 0.5).mean
        prior_uniform_mean_correct = Uniform(1.2, 2.5).mean
        prior_categorical_mean_correct = 1.  # Categorical([0.1, 0.5, 0.4])
        prior_poisson_mean_correct = Poisson(4.0).mean
        prior_bernoulli_mean_correct = Bernoulli(0.2).mean
        prior_beta_mean_correct = Beta(1.2, 2.5).mean
        prior_exponential_mean_correct = Exponential(2.2).mean
        prior_gamma_mean_correct = Gamma(0.5, 1.2).mean
        prior_log_normal_mean_correct = LogNormal(0.5, 0.2).mean
        prior_binomial_mean_correct = Binomial(10, 0.72).mean
        prior_weibull_mean_correct = Weibull(1.1, 0.6).mean

        prior = self._model.prior(num_samples)
        prior_normal = prior.map(
            lambda trace: trace.named_variables['normal'].value)
        prior_uniform = prior.map(
            lambda trace: trace.named_variables['uniform'].value)
        prior_categorical = prior.map(
            lambda trace: trace.named_variables['categorical'].value)
        prior_poisson = prior.map(
            lambda trace: trace.named_variables['poisson'].value)
        prior_bernoulli = prior.map(
            lambda trace: trace.named_variables['bernoulli'].value)
        prior_beta = prior.map(
            lambda trace: trace.named_variables['beta'].value)
        prior_exponential = prior.map(
            lambda trace: trace.named_variables['exponential'].value)
        prior_gamma = prior.map(
            lambda trace: trace.named_variables['gamma'].value)
        prior_log_normal = prior.map(
            lambda trace: trace.named_variables['log_normal'].value)
        prior_binomial = prior.map(
            lambda trace: trace.named_variables['binomial'].value)
        prior_weibull = prior.map(
            lambda trace: trace.named_variables['weibull'].value)
        prior_normal_mean = util.to_numpy(prior_normal.mean)
        prior_uniform_mean = util.to_numpy(prior_uniform.mean)
        prior_categorical_mean = util.to_numpy(int(prior_categorical.mean))
        prior_poisson_mean = util.to_numpy(prior_poisson.mean)
        prior_bernoulli_mean = util.to_numpy(prior_bernoulli.mean)
        prior_beta_mean = util.to_numpy(prior_beta.mean)
        prior_exponential_mean = util.to_numpy(prior_exponential.mean)
        prior_gamma_mean = util.to_numpy(prior_gamma.mean)
        prior_log_normal_mean = util.to_numpy(prior_log_normal.mean)
        prior_binomial_mean = util.to_numpy(prior_binomial.mean)
        prior_weibull_mean = util.to_numpy(prior_weibull.mean)
        util.eval_print('num_samples', 'prior_normal_mean',
                        'prior_normal_mean_correct', 'prior_uniform_mean',
                        'prior_uniform_mean_correct', 'prior_categorical_mean',
                        'prior_categorical_mean_correct', 'prior_poisson_mean',
                        'prior_poisson_mean_correct', 'prior_bernoulli_mean',
                        'prior_bernoulli_mean_correct', 'prior_beta_mean',
                        'prior_beta_mean_correct', 'prior_exponential_mean',
                        'prior_exponential_mean_correct', 'prior_gamma_mean',
                        'prior_gamma_mean_correct', 'prior_log_normal_mean',
                        'prior_log_normal_mean_correct', 'prior_binomial_mean',
                        'prior_binomial_mean_correct', 'prior_weibull_mean',
                        'prior_weibull_mean_correct')

        self.assertTrue(
            np.allclose(prior_normal_mean, prior_normal_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_uniform_mean,
                        prior_uniform_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_categorical_mean,
                        prior_categorical_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_poisson_mean,
                        prior_poisson_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_bernoulli_mean,
                        prior_bernoulli_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_beta_mean, prior_beta_mean_correct, atol=0.1))
        self.assertTrue(
            np.allclose(prior_exponential_mean,
                        prior_exponential_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_gamma_mean, prior_gamma_mean_correct, atol=0.1))
        self.assertTrue(
            np.allclose(prior_log_normal_mean,
                        prior_log_normal_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_binomial_mean,
                        prior_binomial_mean_correct,
                        atol=0.1))
        self.assertTrue(
            np.allclose(prior_weibull_mean,
                        prior_weibull_mean_correct,
                        atol=0.1))