예제 #1
0
 def test_PCA(self):
     """
     Regression test.
     """
     trajectory_handler = TrajectoryHandlerStub(testPCAMetric.not_iterposed_coordsets,66)
     clustering = Clustering([Cluster(None,range(6)),Cluster(None,range(6,12))], "a clustering")
     pcaMetric = PCAMetric(trajectory_handler)
     self.assertAlmostEquals(pcaMetric.evaluate(clustering), 1.427748687873, 12)
예제 #2
0
 def test_eigenvalues(self):
     # do it with PCA metric
     my_cov_matrix = PCAMetric.create_covariance_matrix(testPCAMetric.coordsets)
     biggest_eigenvalue = PCAMetric.calculate_biggest_eigenvalue(my_cov_matrix)
      
     # Do it with prody
     pca = prody.PCA('pcametric_pca')
     pca.buildCovariance(testPCAMetric.ensemble)
     pca.calcModes(n_modes=1)
     self.assertAlmostEqual(pca.getEigvals()[0], biggest_eigenvalue,10)
예제 #3
0
 def test_PCA(self):
     """
     Regression test.
     """
     trajectory_handler = TrajectoryHandlerStub(
         testPCAMetric.not_iterposed_coordsets, 66)
     clustering = Clustering(
         [Cluster(None, range(6)),
          Cluster(None, range(6, 12))], "a clustering")
     pcaMetric = PCAMetric(trajectory_handler)
     self.assertAlmostEquals(pcaMetric.evaluate(clustering), 1.427748687873,
                             12)
예제 #4
0
    def test_eigenvalues(self):
        # do it with PCA metric
        my_cov_matrix = PCAMetric.create_covariance_matrix(
            testPCAMetric.coordsets)
        biggest_eigenvalue = PCAMetric.calculate_biggest_eigenvalue(
            my_cov_matrix)

        # Do it with prody
        pca = prody.PCA('pcametric_pca')
        pca.buildCovariance(testPCAMetric.ensemble)
        pca.calcModes(n_modes=1)
        self.assertAlmostEqual(pca.getEigvals()[0], biggest_eigenvalue, 10)
예제 #5
0
 def test_covariance_matrix_vs_prody(self):
     # do it with PCA metric
     my_cov_matrix = PCAMetric.create_covariance_matrix(testPCAMetric.coordsets)
      
     # Do it with prody
     pca = prody.PCA('pcametric_pca')
     pca.buildCovariance(testPCAMetric.ensemble)
     prody_cov_matrix = pca._cov
      
     # Compare
     numpy.testing.assert_almost_equal(my_cov_matrix, prody_cov_matrix,10)
예제 #6
0
    def test_covariance_matrix_vs_prody(self):
        # do it with PCA metric
        my_cov_matrix = PCAMetric.create_covariance_matrix(
            testPCAMetric.coordsets)

        # Do it with prody
        pca = prody.PCA('pcametric_pca')
        pca.buildCovariance(testPCAMetric.ensemble)
        prody_cov_matrix = pca._cov

        # Compare
        numpy.testing.assert_almost_equal(my_cov_matrix, prody_cov_matrix, 10)
예제 #7
0
 def analysis_function_pca(self, clustering, trajectory_handler):
     calculator = PCAMetric(trajectory_handler)
     return calculator.evaluate(clustering)
예제 #8
0
 def analysis_function_pca(self, clustering, data_handler):
     """
     """
     calculator = PCAMetric(data_handler)
     return calculator.evaluate(clustering)
예제 #9
0
 def analysis_function_pca(self,clustering, data_handler):
     """
     """
     calculator = PCAMetric(data_handler)
     return calculator.evaluate(clustering)