예제 #1
0
파일: lris_carpy.py 프로젝트: cenko/python
def lris_standard(standards, xcorr=yes):

    '''Extract standard stars and calculate sensitivity functions.'''

    for ofile, nstd in standards:

        shutil.copy(ofile, "%s.fits" % nstd)
        
        # Extract standard
        if get_head("%s.fits" % nstd, "SKYSUB"):
            iraf.apall(nstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                       edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                       review=no, background="none")
        else:
            iraf.apall(nstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                       edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                       review=no, background="fit")

        if xcorr:
            # Cross correlate to tweak wavelength
            iraf.xcsao("%s.ms" % nstd, templates=XCTEMPLATE,
                       correlate="wavelength", logfiles="%s.xcsao" % ofile)

            # If a solution was found, apply shift
            try:
                xcsaof = open("%s.xcsao" % ofile)
                shift = float(xcsaof.readlines()[6].split()[14])
            except:
                shift = 0.0
                iraf.specshift("%s.ms" % nstd, -shift)
        
        # Create telluric
        iraf.splot("%s.ms" % nstd) # Remove telluric and absorption, save as a%s.ms
        iraf.sarith("%s.ms" % nstd, "/", "a%s.ms" % nstd, "telluric.%s.fits" % nstd)
        iraf.imreplace("telluric.%s.fits" % nstd, 1.0, lower=0.0, upper=0.0)
        iraf.splot("telluric.%s.fits" % nstd) # Remove stellar features and resave
        
        # Create smoothed standard
        iraf.gauss("a%s.ms[*,1,1]" % nstd, "s%s.ms" % nstd, 5.0)
        iraf.sarith("%s.ms" % nstd, "/", "s%s.ms" % nstd, "ds%s.ms" % nstd)

        # Apply telluric correction
        iraf.telluric("ds%s.ms" % nstd, "tds%s.ms" % nstd, "telluric.%s.fits" % nstd,
                      xcorr=no, tweakrms=no, interactive=no,
                      sample='4000:4010,6850:6975,7150:7350,7575:7725,8050:8400,8900:9725')

        # Define bandpasses for standard star calculation
        obj=get_head("%s.fits" % nstd, "OBJECT")
        iraf.standard("tds%s.ms" % nstd, "%s.std" % nstd,
                  extinction='home$extinct/maunakeaextinct.dat',
                  caldir='home$standards/', observatory='Keck', interac=yes,
                  star_name=obj, airmass='', exptime='')
    
        # Determine sensitivity function
        iraf.sensfunc('%s.std' % nstd, '%s.sens' % nstd,
                      extinction='home$extinct/maunakeaextinct.dat',
                      newextinction='extinct.dat', observatory='Keck',
                      function='legendre', order=4, interactive=yes)

    return
예제 #2
0
def make_flat(images,
              outflat,
              gain=1.0,
              rdnoise=0.0,
              xwindow=50,
              ywindow=50,
              hmin=0,
              hmax=65535,
              lowclip=0.7,
              highclip=1.3):
    '''Construct flat field from individual frames'''

    flatimages = ','.join(images)
    iraf.flatcombine(flatimages,
                     output='flat1',
                     combine='median',
                     reject='avsigclip',
                     ccdtype='',
                     process=no,
                     subsets=no,
                     delete=no,
                     clobber=no,
                     scale='median',
                     lsigma=3.0,
                     hsigma=3.0,
                     gain=gain,
                     rdnoise=rdnoise)
    iraf.fmedian('flat1', 'flat2', xwindow, ywindow, hmin=hmin, hmax=hmax)
    iraf.imarith('flat1', '/', 'flat2', outflat)
    iraf.imreplace(outflat, 1.0, lower=INDEF, upper=lowclip)
    iraf.imreplace(outflat, 1.0, lower=highclip, upper=INDEF)

    return
예제 #3
0
def run_imreplace(imageFilename, lowPixVal, uppPixVal):
	'''
	replace all pixels in image between lower and upper with zero

	parameter imageFilename - the full path filename of the image on which to invoke imexam
	parameter lowPixVal - the lower bound of pixels to be replaced with zero
	parameter uppPixVal - the upper bound of pixels to be replaced with zero
	'''
	# TODO: this could be inlines easily, only called once in main()
	iraf.imreplace(imageFilename, 0, lower=lowPixVal, upper=uppPixVal)
예제 #4
0
파일: irproc.py 프로젝트: ih64/4U1543
def flatten(flatFile):
    """grab any sky-subtracted images, and flatten them using flatFile"""
    # first we have to clean up the flat, and get rid of any negative numbers or zeros
    # just set them equal to 1 (??? why do we do this ???)
    iraf.imreplace(flatFile, 1.0, imaginary=0.0, lower="INDEF", upper=1.0, radius=0.0)
    # get a list of the sky subtracted images
    skyims = glob.glob("scratch/s-binir*fits")
    flatIms = ["s-f-" + i[10:] for i in skyims]
    # organize input and output in iraf-friendly ways
    inputFiles = joinStrList(skyims)
    outputFiles = joinStrList(flatIms, scratch=True)
    # now flatfield the sky subtracted images
    iraf.ccdproc(
        images=inputFiles,
        output=outputFiles,
        ccdtype="",
        max_cache=0,
        noproc="no",
        fixpix="no",
        overscan="no",
        trim="no",
        zerocor="no",
        darkcor="no",
        flatcor="yes",
        illumcor="no",
        fringecor="no",
        readcor="no",
        scancor="no",
        readaxis="line",
        fixfile="",
        biassec="",
        trimsec="",
        zero="",
        dark="",
        flat=flatFile,
        illum="",
        fringe="",
        minreplace=1.0,
        scantype="shortscan",
        nscan=1,
        interactive="no",
        function="legendre",
        order=1,
        sample="*",
        naverage=1,
        niterate=1,
        low_reject=3.0,
        high_reject=3.0,
        grow=0.0,
    )
    return
예제 #5
0
파일: kast_redux.py 프로젝트: cenko/python
def make_flat(images, outflat, gain=1.0, rdnoise=0.0, xwindow=50,
              ywindow=50, hmin=0, hmax=65535, lowclip=0.7, highclip=1.3):

    '''Construct flat field from individual frames'''
    
    flatimages=','.join(images)
    iraf.flatcombine(flatimages, output='flat1', combine='median', 
                     reject='avsigclip', ccdtype='', process=no, subsets=no,
                     delete=no, clobber=no, scale='median', lsigma=3.0,
                     hsigma=3.0, gain=gain, rdnoise=rdnoise)
    iraf.fmedian('flat1', 'flat2', xwindow, ywindow, hmin=hmin, hmax=hmax)
    iraf.imarith('flat1', '/',  'flat2', outflat)
    iraf.imreplace(outflat, 1.0, lower=INDEF, upper=lowclip)
    iraf.imreplace(outflat, 1.0, lower=highclip, upper=INDEF)

    return
예제 #6
0
파일: mkskysig.py 프로젝트: hiroiki/astro
def main(fits):
    fits_skysig = fits[0:fits.rfind(".")] + "_skysig.fits"
    sexpath = "/Users/nagashima/astro/default/sextractor/object/default.sex"  #set sextractor configure file path

    #make object mask image
    fits_seg = fits[0:fits.rfind(".")] + "_seg.fits"
    cat_seg = fits_seg[0:fits_seg.rfind(".")] + ".cat"
    dma = 1.
    os.system(
        "sex %s -c %s -DETECT_MINAREA %s -CHECKIMAGE_TYPE SEGMENTATION -CATALOG_NAME %s -CHECKIMAGE_NAME %s"
        % (fits, sexpath, dma, cat_seg, fits_seg))
    iraf.imreplace(images=fits_seg, value=1e06, lower=1.)

    #use stack image  and only object image -> make skysigma image
    if os.path.exists(fits_skysig) == True:
        os.system("rm %s" % fits_skysig)

    iraf.imarith(fits, "+", fits_seg, fits_skysig)

    print "ds9 %s &" % fits_skysig
    return fits_skysig
def prep(df_image, hi_res_image):
    'run SExtractor to get bright sources that are easily detected in the high resolution data'
    ##### DEB: Can choose to run sextractor more or less aggressively
    subprocess.call('sex %s' % hi_res_image, shell=True)
    'copy the segmentation map to a mask'
    iraf.imcopy('seg.fits', '_mask.fits')
    'replace the values in the segments in the segmentation map (i.e. stars) all to 1, all the background is still 0'
    iraf.imreplace('_mask.fits', 1, lower=0.5)
    'multiply the mask (with 1s at the stars) by the high res image to get the star flux back - now have the flux model'
    iraf.imarith('_mask.fits', '*', '%s' % hi_res_image, '_fluxmod_cfht')
    'smooth the flux model'
    'increase size of mask, so more is subtracted'
    'the "1.5" in the next line should be a user-defined parameter that is given'
    'to the script; it controls how much of the low surface brightness'
    'emission in the outskirts of galaxies is subtracted. This choice'
    'depends on the science application'
    iraf.gauss('_fluxmod_cfht', '_fluxmod_cfht_smoothed', 2.5)  ### nsigma=4
    '''
    imreplace _fluxmod_cfht_rs -1 lower=0 upper=0
    imreplace _fluxmod_cfht_rs 1 lower=-0.5
    imreplace _fluxmod_cfht_rs 0 upper=-0.5
    imarith _cfht_r * _fluxmod_cfht_rs _fluxmod_cfht_r_new
    '''
    '''
    # this is the key new step! we're registering the CFHT image
    #  to a frame that is 4x finer sampled than the Dragonfly image.
    # this avoids all the pixelation effects we had before. 
    #  (4x seems enough; but we could have it as a free parameter - need
    # to be careful as it occurs elsewhere in the scripts too) 
    blkrep _df_g _df_g4 4 4
    '''

    'register the flux model onto the same pixel scale as the dragonfly image'
    iraf.wregister('_fluxmod_cfht_smoothed',
                   '%s' % df_image,
                   '_fluxmod_dragonfly',
                   interpo='linear',
                   fluxcon='yes')

    return None
예제 #8
0
def make_skysigim( fitspath ):
	"""
	stdout	= iraf.imstat(images=fitspath,fields="npix,min,max,stddev,midpt,mode",Stdout=1)
	
	key_ls	= stdout[0].strip("#").split()
	val_ls	= map(float,stdout[1].split())
	data	= dict([(key,val) for key,val in zip(key_ls,val_ls)])
	if ( data["MIDPT"] < 1000 ) and ( data["MODE"] < 1000 ):
		fits_skypath	= fitspath
		print "Already substract sky!!"
	else:
		fits_skypath	= fitspath[0:fitspath.rfind(".")] + "_sk.fits"
		os.system("sex %s -c /mnt/data5/users/nagashima/default/default.sex -CHECKIMAGE_TYPE -BACKGROUND -CHECKIMAGE_NAME %s" % (fitspath,fits_skypath))
		print "Subtract sky!!"	
	"""
	objonlypath	= fitspath[0:fitspath.rfind("/")] + "/object_only.fits"
	skysigpath	= fitspath[0:fitspath.rfind("/")] + "/skysig.fits"
	if os.path.exists(objonlypath) == True	:os.remove(objonlypath)
	if os.path.exists(skysigpath)  == True	:os.remove(skysigpath)
	
	os.system("sex %s -c /mnt/data5/users/nagashima/default/default.sex -CHECKIMAGE_TYPE OBJECTS -CHECKIMAGE_NAME %s" % (fitspath,objonlypath))
	iraf.imreplace(images=objonlypath,value=-300000,lower=1)#not 0 not float so
	iraf.imarith(fitspath,"+",objonlypath,skysigpath)
	return skysigpath
예제 #9
0
def mask(res_org,upperlim=0.04):
    print "\n**** Masking the residual, using upperlim of %s ****\n" % upperlim

    upperlim = float(upperlim)

    iraf.imdel('_res_final.fits')
    iraf.imdel('_model_mask')
    iraf.imdel('_model_maskb')
    
    iraf.imcopy('_model_sc.fits','_model_mask.fits')
    iraf.imreplace('_model_mask.fits',0,upper=upperlim)
    iraf.imreplace('_model_mask.fits',1,lower=upperlim/2.)
    iraf.boxcar('_model_mask','_model_maskb',5,5)
    iraf.imreplace('_model_maskb.fits',1,lower=0.1)
    iraf.imreplace('_model_maskb.fits',0,upper=0.9)
    iraf.imarith(1,'-','_model_maskb','_model_maskb')
    iraf.imarith('_model_maskb','*',res_org,'_res_final')

    return None
예제 #10
0
파일: cosmics.py 프로젝트: svalenti/pessto
def lacos(_input0, output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, verbose=True, interactive=False):
    # print "LOGX:: Entering `lacos` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import delete
    import sys
    import re
    import os
    import string
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits', 'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits', 'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    delete(galaxy)
    delete(skymod)
    delete(oldoutput)

    if not output:
        output = _input0
    else:
        delete(output)
        iraf.imcopy(_input0, output, verbose='no')

    delete('_xxx.fits,_yyy.fits')
    iraf.imcopy(_input0 + '[350:550,*]', '_xxx.fits', verbose='no')
    _input = '_xxx.fits'

    arrayinput, headerinput = ntt.cosmics.fromfits(_input, verbose=False)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayinput - arrayinput), headerinput, verbose=False)

    # subtract object spectra if desired
    iraf.fit1d(_input, galaxy, "fit", axis=2, order=9, func="leg", low=4.,
               high=4., nav=1, inter='no', sample="*", niter=3, grow=0, cursor="")
    iraf.imarith(_input, "-", galaxy, oldoutput)
    # Subtract sky lines
    iraf.fit1d(oldoutput, skymod, "fit", axis=1, order=5, func="leg", low=4., high=4.,
               inter='no', sample="*", nav=1, niter=3, grow=0, cursor="")
    iraf.imarith(oldoutput, "-", skymod, oldoutput)

    arrayoldoutput, headeroldoutput = ntt.cosmics.fromfits(
        oldoutput, verbose=False)
    # add object spectra to sky model
    iraf.imarith(skymod, "+", galaxy, skymod)
    delete(med5)
    # add median of residuals to sky model
    iraf.median(oldoutput, med5, 5, 5, zlor='INDEF',
                zhir='INDEF', verbose='no')
#    m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
    iraf.imarith(skymod, "+", med5, med5)
    # take second-order derivative (Laplacian) of input image
    # kernel is convolved with subsampled image, in order to remove negative
    # pattern around high pixels
    delete(blk)
    delete(lapla)
    iraf.blkrep(oldoutput, blk, 2, 2)
    iraf.convolve(blk, lapla, '_kernel')
    iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
    delete(deriv2)
    delete(noise)
    iraf.blkavg(lapla, deriv2, 2, 2, option="average")
    # create noise model
    iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) +
                       '**2)/' + str(gain), a=med5, output=noise, verbose='no')
    iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')
    # divide Laplacian by noise model
    delete(sigmap)
    iraf.imutil.imexpr(expr='(a/b)/2', a=deriv2, b=noise,
                       output=sigmap, verbose='no')
    # removal of large structure (bright, extended objects)
    delete(med5)
    iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imarith(sigmap, "-", med5, sigmap)
    # find all candidate cosmic rays
    # this selection includes sharp features such as stars and HII regions

    arraysigmap, headersigmap = ntt.cosmics.fromfits(sigmap, verbose=False)
    arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
    arrayf = np.where(arrayf > 0.1, 1, arrayf)
    ntt.cosmics.tofits(firstsel, np.float32(
        arrayf), headersigmap, verbose=False)

    # compare candidate CRs to median filtered image
    # this step rejects bright, compact sources from the initial CR list
    # subtract background and smooth component of objects
    delete(med3)
    iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
    delete(med7)
    delete('_' + med3)
    iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imutil.imexpr(expr='(a-b)/c', a=med3, b=med7,
                       c=noise, output='_' + med3, verbose='no')
    iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')
    # compare CR flux to object flux
    delete(starreject)
    iraf.imutil.imexpr(expr='a+b+c', a=firstsel, b=sigmap,
                       c="_" + med3, output=starreject, verbose='no')
    # discard if CR flux <= objlim * object flux
    iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
    iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
    iraf.imarith(firstsel, "*", starreject, firstsel)

    # grow CRs by one pixel and check in original sigma map
    arrayfirst, headerfirst = ntt.cosmics.fromfits(firstsel, verbose=False)
    arraygfirst = ntt.cosmics.my_convolve_with_FFT2(arrayfirst, gkernel)

    arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
    arraygfirst = arraygfirst * arraysigmap
    arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
    arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

    # grow CRs by one pixel and lower detection limit
    sigcliplow = sigfrac * sigclip
    # Finding neighbouring pixels affected by cosmic rays
    arrayfinal = ntt.cosmics.my_convolve_with_FFT2(arraygfirst, gkernel)
    arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
    arrayfinal = arrayfinal * arraysigmap
    arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
    arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

    # determine number of CRs found in this iteration
    arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
    npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]
    # create cleaned output image; use 3x3 median with CRs excluded
    arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayoutmask), headerfirst, verbose=False)
    delete(inputmask)
    arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
    ntt.cosmics.tofits(inputmask, np.float32(
        arrayinputmask), headerfirst, verbose=False)
    delete(med5)
    iraf.median(inputmask, med5, 5, 5, zloreject=-
                9999, zhi='INDEF', verbose='no')
    iraf.imarith(outmask, "*", med5, med5)
    delete('_yyy.fits')
    iraf.imutil.imexpr(expr='(1-a)*b+c', a=outmask, b=oldoutput,
                       c=med5, output='_yyy.fits', verbose='no')
    # add sky and object spectra back in
    iraf.imarith('_yyy.fits', "+", skymod, '_yyy.fits')
    # cleanup and get ready for next iteration
    if npix == 0:
        stop = yes
      # delete temp files
    iraf.imcopy('_yyy.fits', output + '[350:550,*]', verbose='no')
    delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    delete(firstsel + "," + starreject)
    delete(finalsel + "," + inputmask)
    delete(oldoutput + "," + skymod + "," + galaxy)
    delete("_" + med3 + ",_" + sigmap)
    delete('_kernel' + "," + '_gkernel')
    delete(outmask)
    delete('_xxx.fits,_yyy.fits')
예제 #11
0
def lacos_spec(_input, output='clean.fits', outmask='mask.fits', gain=1.3, readn=9,\
               xorder=9, yorder=3, sigclip=4.5, sigfrac=0.5, objlim=1, niter=4, instrument='kastr', verbose=True, interactive=False):
    # print "LOGX:: Entering `lacos` method/function in %(__file__)s" %
    # globals()
    import lickshane
    import sys
    import re
    import os
    import string
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits', 'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits', 'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    lickshane.util.delete(galaxy)
    lickshane.util.delete(skymod)
    lickshane.util.delete(oldoutput)

    if not output:
        output = _input
    else:
        os.system('cp ' + _input + ' ' + output)
    os.system('cp ' + _input + ' ' + oldoutput)

    arrayinput, headerinput = lickshane.cosmics.fromfits(oldoutput,
                                                         verbose=False)
    lickshane.cosmics.tofits(outmask,
                             np.float32(arrayinput - arrayinput),
                             headerinput,
                             verbose=False)

    if instrument in ['kastr']:
        axis1 = 1
        axis2 = 2
    elif instrument in ['kastb']:
        axis1 = 2
        axis2 = 1

    # subtract object spectra if desired
    if xorder > 0:
        iraf.fit1d(oldoutput,
                   galaxy,
                   "fit",
                   axis=axis1,
                   order=xorder,
                   func="leg",
                   low=4.,
                   high=4.,
                   nav=1,
                   inter='no',
                   sample="*",
                   niter=3,
                   grow=0,
                   cursor="")
        iraf.imarith(oldoutput, "-", galaxy, oldoutput)
    else:
        lickshane.cosmics.tofits(galaxy,
                                 np.float32(arrayinput - arrayinput),
                                 headerinput,
                                 verbose=False)

    # Subtract sky lines
    if yorder > 0:
        iraf.fit1d(oldoutput,
                   skymod,
                   "fit",
                   axis=axis2,
                   order=yorder,
                   func="leg",
                   low=4.,
                   high=4.,
                   inter='no',
                   sample="*",
                   nav=1,
                   niter=3,
                   grow=0,
                   cursor="")
        iraf.imarith(oldoutput, "-", skymod, oldoutput)
    else:
        lickshane.cosmics.tofits(skymod,
                                 np.float32(arrayinput - arrayinput),
                                 headerinput,
                                 verbose=False)

    arrayoldoutput, headeroldoutput = lickshane.cosmics.fromfits(oldoutput,
                                                                 verbose=False)

    # add object spectra to sky model
    iraf.imarith(skymod, "+", galaxy, skymod)

    ###########
    ##  start iteration
    ###########
    ii = 0
    while ii < niter:
        print ii
        # add median of residuals to sky model
        lickshane.util.delete(med5)
        iraf.median(oldoutput,
                    med5,
                    5,
                    5,
                    zlor='INDEF',
                    zhir='INDEF',
                    verbose='no')
        #          m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
        iraf.imarith(skymod, "+", med5, med5)

        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        lickshane.util.delete(blk)
        lickshane.util.delete(lapla)
        lickshane.util.delete(deriv2)
        lickshane.util.delete(noise)
        lickshane.util.delete(sigmap)

        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")

        # create noise model
        iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) +
                           '**2)/' + str(gain),
                           a=med5,
                           output=noise,
                           verbose='no')
        iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')

        # divide Laplacian by noise model
        iraf.imutil.imexpr(expr='(a/b)/2',
                           a=deriv2,
                           b=noise,
                           output=sigmap,
                           verbose='no')

        # removal of large structure (bright, extended objects)
        lickshane.util.delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(sigmap, "-", med5, sigmap)

        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions
        arraysigmap, headersigmap = lickshane.cosmics.fromfits(sigmap,
                                                               verbose=False)
        arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
        arrayf = np.where(arrayf > 0.1, 1, arrayf)
        lickshane.cosmics.tofits(firstsel,
                                 np.float32(arrayf),
                                 headersigmap,
                                 verbose=False)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        lickshane.util.delete(med3)

        iraf.median(oldoutput,
                    med3,
                    3,
                    3,
                    zlo='INDEF',
                    zhi='INDEF',
                    verbose='no')
        lickshane.util.delete(med7)
        lickshane.util.delete('_' + med3)
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imutil.imexpr(expr='(a-b)/c',
                           a=med3,
                           b=med7,
                           c=noise,
                           output='_' + med3,
                           verbose='no')
        iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')

        # compare CR flux to object flux
        lickshane.util.delete(starreject)
        iraf.imutil.imexpr(expr='(a*b)/c',
                           a=firstsel,
                           b=sigmap,
                           c="_" + med3,
                           output=starreject,
                           verbose='no')
        #   ######         #####        ######          #####       ######  FOUND A BUG ?
        #          iraf.imutil.imexpr(expr='a+b+c', a=firstsel, b=sigmap,
        #                             c="_" + med3, output=starreject, verbose='no')

        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
        iraf.imarith(firstsel, "*", starreject, firstsel)

        # grow CRs by one pixel and check in original sigma map
        arrayfirst, headerfirst = lickshane.cosmics.fromfits(firstsel,
                                                             verbose=False)
        arraygfirst = lickshane.cosmics.my_convolve_with_FFT2(
            arrayfirst, gkernel)

        arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
        arraygfirst = arraygfirst * arraysigmap
        arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
        arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip

        # Finding neighbouring pixels affected by cosmic rays
        arrayfinal = lickshane.cosmics.my_convolve_with_FFT2(
            arraygfirst, gkernel)
        arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
        arrayfinal = arrayfinal * arraysigmap
        arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
        arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

        # determine number of CRs found in this iteration
        arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
        npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]

        # create cleaned output image; use 3x3 median with CRs excluded
        arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
        lickshane.cosmics.tofits(outmask,
                                 np.float32(arrayoutmask),
                                 headerfirst,
                                 verbose=False)
        lickshane.util.delete(inputmask)
        arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
        lickshane.cosmics.tofits(inputmask,
                                 np.float32(arrayinputmask),
                                 headerfirst,
                                 verbose=False)
        lickshane.util.delete(med5)
        iraf.median(inputmask,
                    med5,
                    5,
                    5,
                    zloreject=-9999,
                    zhi='INDEF',
                    verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        lickshane.util.delete(output)
        iraf.imutil.imexpr(expr='(1-a)*b+c',
                           a=outmask,
                           b=oldoutput,
                           c=med5,
                           output=output,
                           verbose='no')

        lickshane.util.delete(oldoutput)
        os.system('cp ' + output + ' ' + oldoutput)

        # add sky and object spectra back in
        iraf.imarith(output, "+", skymod, output)
        # cleanup and get ready for next iteration
        ii = ii + 1
        if npix == 0:
            ii = niter
    # delete temp files

    lickshane.util.delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    lickshane.util.delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    lickshane.util.delete(firstsel + "," + starreject)
    lickshane.util.delete(finalsel + "," + inputmask)
    lickshane.util.delete(oldoutput + "," + skymod + "," + galaxy)
    lickshane.util.delete("_" + med3 + ",_" + sigmap)
    lickshane.util.delete('_kernel' + "," + '_gkernel')
    lickshane.util.delete(outmask)
예제 #12
0
def lacos(_input0,
          output='clean.fits',
          outmask='mask.fits',
          gain=1.3,
          readn=9,
          xorder=9,
          yorder=9,
          sigclip=4.5,
          sigfrac=0.5,
          objlim=1,
          verbose=True,
          interactive=False):
    import floyds
    from floyds.util import delete
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    delete(galaxy)
    delete(skymod)
    delete(oldoutput)

    if not output:
        output = _input0
    else:
        delete(output)
        iraf.imcopy(_input0, output, verbose='no')

    delete('_xxx.fits,_yyy.fits')
    iraf.imcopy(_input0 + '[*,10:80]', '_xxx.fits', verbose='no')
    _input = '_xxx.fits'

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayinput - arrayinput),
                          headerinput,
                          verbose=False)

    # subtract object spectra if desired
    #    iraf.fit1d(_input,galaxy,"fit",axis=2,order=5,func="leg",low=4.,
    #            high=4.,nav=1,inter='yes',sample="*",niter=3,grow=0,cursor="")
    #    iraf.imarith(_input,"-",galaxy,oldoutput)
    #    iraf.display(oldoutput,1,fill='yes') #######
    #Subtract sky lines
    #    iraf.fit1d(oldoutput,skymod,"fit",axis=2,order=5,func="leg",low=4.,high=4.,
    #            inter='no',sample="*",nav=1,niter=3,grow=0,cursor="")
    #    iraf.imarith(oldoutput,"-",skymod,oldoutput)
    #    iraf.display(oldoutput,2,fill='yes')  #####
    iraf.imcopy(_input, oldoutput)
    arrayoldoutput, headeroldoutput = floyds.cosmics.fromfits(oldoutput,
                                                              verbose=False)
    # add object spectra to sky model
    #    iraf.imarith(skymod,"+",galaxy,skymod)
    delete(med5)
    # add median of residuals to sky model
    iraf.median(oldoutput,
                med5,
                5,
                5,
                zlor='INDEF',
                zhir='INDEF',
                verbose='no')
    #    m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
    #    iraf.imarith(skymod,"+",med5,med5)
    # take second-order derivative (Laplacian) of input image
    # kernel is convolved with subsampled image, in order to remove negative
    # pattern around high pixels
    delete(blk)
    delete(lapla)
    iraf.blkrep(oldoutput, blk, 2, 2)
    iraf.convolve(blk, lapla, '_kernel')
    iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
    delete(deriv2)
    delete(noise)
    iraf.blkavg(lapla, deriv2, 2, 2, option="average")
    # create noise model
    iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) +
                       '**2)/' + str(gain),
                       a=med5,
                       output=noise,
                       verbose='no')
    iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')
    # divide Laplacian by noise model
    delete(sigmap)
    iraf.imutil.imexpr(expr='(a/b)/2',
                       a=deriv2,
                       b=noise,
                       output=sigmap,
                       verbose='no')
    # removal of large structure (bright, extended objects)
    delete(med5)
    iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imarith(sigmap, "-", med5, sigmap)
    # find all candidate cosmic rays
    # this selection includes sharp features such as stars and HII regions

    arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap, verbose=False)
    arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
    arrayf = np.where(arrayf > 0.1, 1, arrayf)
    floyds.cosmics.tofits(firstsel,
                          np.float32(arrayf),
                          headersigmap,
                          verbose=False)

    # compare candidate CRs to median filtered image
    # this step rejects bright, compact sources from the initial CR list
    # subtract background and smooth component of objects
    delete(med3)
    iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
    delete(med7)
    delete('_' + med3)
    iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imutil.imexpr(expr='(a-b)/c',
                       a=med3,
                       b=med7,
                       c=noise,
                       output='_' + med3,
                       verbose='no')
    iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')
    # compare CR flux to object flux
    delete(starreject)
    iraf.imutil.imexpr(expr='a+b+c',
                       a=firstsel,
                       b=sigmap,
                       c="_" + med3,
                       output=starreject,
                       verbose='no')
    # discard if CR flux <= objlim * object flux
    iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
    iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
    iraf.imarith(firstsel, "*", starreject, firstsel)

    # grow CRs by one pixel and check in original sigma map
    arrayfirst, headerfirst = floyds.cosmics.fromfits(firstsel, verbose=False)
    arraygfirst = floyds.cosmics.my_convolve_with_FFT2(arrayfirst, gkernel)

    arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
    arraygfirst = arraygfirst * arraysigmap
    arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
    arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

    # grow CRs by one pixel and lower detection limit
    sigcliplow = sigfrac * sigclip
    # Finding neighbouring pixels affected by cosmic rays
    arrayfinal = floyds.cosmics.my_convolve_with_FFT2(arraygfirst, gkernel)
    arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
    arrayfinal = arrayfinal * arraysigmap
    arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
    arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

    # determine number of CRs found in this iteration
    arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
    npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]
    # create cleaned output image; use 3x3 median with CRs excluded
    arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayoutmask),
                          headerfirst,
                          verbose=False)
    delete(inputmask)
    arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
    floyds.cosmics.tofits(inputmask,
                          np.float32(arrayinputmask),
                          headerfirst,
                          verbose=False)
    delete(med5)
    iraf.median(inputmask,
                med5,
                5,
                5,
                zloreject=-9999,
                zhi='INDEF',
                verbose='no')
    iraf.imarith(outmask, "*", med5, med5)
    delete('_yyy.fits')
    iraf.imutil.imexpr(expr='(1-a)*b+c',
                       a=outmask,
                       b=oldoutput,
                       c=med5,
                       output='_yyy.fits',
                       verbose='no')
    # add sky and object spectra back in
    #iraf.imarith('_yyy.fits',"+",skymod,'_yyy.fits')
    # cleanup and get ready for next iteration
    if npix == 0: stop = yes
    # delete temp files
    iraf.imcopy('_yyy.fits', output + '[*,10:80]', verbose='no')
    delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    delete(firstsel + "," + starreject)
    delete(finalsel + "," + inputmask)
    delete(oldoutput + "," + skymod + "," + galaxy)
    delete("_" + med3 + ",_" + sigmap)
    delete('_kernel' + "," + '_gkernel')
    delete(outmask)
    delete('_xxx.fits,_yyy.fits')
예제 #13
0
def irafflatten():
    os.system('cp /Users/rfinn/clusters/spitzer/flatsexfiles/* .')
    infile=open('InputImageList.txt','r')
    outfile=open('FlatImageList.txt','w')
    sky=[]
    for line in infile:
	im=line[0:(len(line)-1)]
	mask='mask'+im
	skyim='s'+im
	outline='f'+line
	iraf.imgets(im,'DRIBKGND')
	t=iraf.imgets.value
	sky.append(float(t))
	outfile.write(outline)
    #get object positions using sextractor
	iraf.imarith(im,'-',t,skyim)#subtract sky before running sextractor (otherwise it doesn't detect any objects - don't know why...)
	s='sex '+skyim
	os.system(s)
	x=[]
	y=[]
	catfile=open('test.cat','r')
	for line in catfile:
	    if line.find('#') > -1:
		continue
	    t=line.split()
	    x.append(float(t[10]))
	    y.append(float(t[11]))
	catfile.close()
	x=N.array(x,'f')
	y=N.array(y,'f')
        
	try:#create image of ones same size as image
	    iraf.imarith(im,'/',im,'mask')
	except:
	    iraf.imdelete('mask')
	    iraf.imarith(im,'/',im,'mask')
	print "masking objects"
	for j in range(len(x)): #mask objects and radius around each position using imreplace, radius=10 pix
	    for k in range(11):
		y1=int(y[j]+5-k)
		if y1 < 1:
		    continue
		if y1 > 128:
		    continue
		xmin=int(x[j]-5)
		if xmin < 1:
		    xmin=1
		xmax=int(x[j]+5)
		if xmax > 128:
		    xmax=128

		s='mask['+str(xmin)+':'+str(xmax)+","+str(y1)+":"+str(y1)+"]"
		iraf.imreplace(s,0.)
	iraf.imrename('mask',mask)
	print "updating BPM field in header"
	iraf.hedit(im,fields='BPM',value=mask,add='yes',verify='no',update='yes')
    outfile.close()
    infile.close()
    avesky=N.average(N.array(sky,'f'))
    lthresh=avesky-1.
    hthresh=avesky+.6
    iraf.imcombine('@InputImageList.txt','flat',combine='average',reject='ccdclip',scale='none',zero='mode',lthreshold=lthresh,hthreshold=hthresh,lsigma=2.,hsigma=2.,rdnoise=5.,gain=5.,blank=1.,grow=12.,masktype='badvalue',maskvalue='0')
    t=iraf.imstat('flat',fields='mean',format='no',Stdout=1)
    ave=float(t[0])
    iraf.imarith('flat','/',ave,'nflat')
    iraf.imarith('@InputImageList.txt','/','nflat','@FlatImageList.txt')
def subract(df_image, psf):
    iraf.imdel('_model*.fits')
    iraf.imdel('_res*.fits')
    iraf.imdel('_df_sub')

    'subtract the sky value from the dragonfly image header'
    df_backval = fits.getheader(df_image)['BACKVAL']
    iraf.imarith('%s' % df_image, '-', '%s' % df_backval, '_df_sub')

    'convolve the model with the Dragonfly PSF'
    if usemodelpsf:
        makeallisonspsf()
        psf = './psf/psf_static_fullframe.fits'
    ### XXX resample the PSF by a factor of 4

    if verbose:
        print 'VERBOSE:  Using %s for the psf convolution.' % psf
    iraf.stsdas.analysis.fourier.fconvolve('_fluxmod_dragonfly', '%s' % psf,
                                           '_model')

    'shift the images so they have the same physical coordinates'
    iraf.stsdas.analysis.dither.crossdriz('_df_sub.fits',
                                          '_model.fits',
                                          'cc_images',
                                          dinp='no',
                                          dref='no')
    iraf.stsdas.analysis.dither.shiftfind('cc_images.fits', 'shift_values')
    x_shift = 0
    y_shift = 0
    with open('shift_values', 'r') as datafile:
        line = datafile.read().split()
        x_shift = float(line[2])
        y_shift = float(line[4])
    print('The shift in x and y are: ' + str(x_shift) + ',' + str(y_shift))
    iraf.imshift('_model', '_model_sh', 0 - x_shift, 0 - y_shift)

    'scale the model so that roughly the same as the _df_sub image'
    if usemodelpsf:
        iraf.imarith(
            '_model_sh', '/', 16., '_model_sc'
        )  ## just trying to match it to the original (below) approximately
    else:
        iraf.imarith(
            '_model_sh', '/', 2422535.2, '_model_sc'
        )  ## difference between the flux of the star used to make the psf in both frames

    iraf.imarith('_model_sc', '*', 1.5, '_model_sc')

    'subtract the model frm the dragonfly cutout'
    iraf.imarith('_df_sub', '-', '_model_sc', '_res')

    '????'
    iraf.imcopy('_model_sc', '_model_mask')
    iraf.imreplace('_model_mask.fits', 0, upper=50)
    iraf.imreplace('_model_mask.fits', 1, lower=0.01)
    iraf.boxcar('_model_mask', '_model_maskb', 5, 5)
    iraf.imreplace('_model_maskb.fits', 1, lower=0.1)
    iraf.imreplace('_model_maskb.fits', 0, upper=0.9)
    iraf.imarith(1, '-', '_model_maskb', '_model_maskb')
    iraf.imarith('_model_maskb', '*', '_res', '_res_final')

    return None
예제 #15
0
r = 555.
#template image
template = 'qopen0004.fits'
try:
    iraf.imarith(template, '/', template, 'mask')
except:
    iraf.imdelete('mask')
    iraf.imarith(template, '/', template, 'mask')

for y in range(1, yc):
    xmax = int(512. - N.sqrt(r**2 - (1. * y - yc)**2))
    if xmax < 1.:
        break
    s = 'mask[1:' + str(xmax) + "," + str(y) + ":" + str(y) + "]"
    print y, s
    iraf.imreplace(s, 0.)
    x1 = int(imxmax - xmax)
    x2 = int(imxmax)
    s = 'mask[' + str(x1) + ':' + str(x2) + ',' + str(y) + ':' + str(y) + ']'
    print y, s
    iraf.imreplace(s, 0.)
    y1 = int(imymax - y + 1)
    y2 = int(imymax)
    s = 'mask[1:' + str(xmax) + "," + str(y1) + ":" + str(y1) + "]"
    print y, s
    iraf.imreplace(s, 0.)
    s = 'mask[' + str(x1) + ':' + str(x2) + ',' + str(y1) + ':' + str(y1) + ']'
    print y, s
    iraf.imreplace(s, 0.)

iraf.display('mask', 2)
def imrep(inimage):
    iraf.imreplace(inimage, value='1')
예제 #17
0
def prep(df_image,hi_res_image,width_mask=1.5,unmaskgal=False,galvalues = None):
    print "\n************ Running the preparation steps ************\n"
    iraf.imdel('_mask.fits')
    iraf.imdel('_fluxmod_cfht*.fits')
    iraf.imdel('_df_4*.fits')
    
    'run SExtractor to get bright sources that are easily detected in the high resolution data'
    subprocess.call('sex %s'%hi_res_image,shell=True)    #####  Add in option to change sextractor threshold detect_thresh and analysis_thresh 2/3
    'copy the segmentation map to a mask'
    iraf.imcopy('seg.fits','_mask.fits')

    ##### Add step to get rid of diffraction spikes

    if unmaskgal:
        'Run SExtractor to get values for the central galaxy'
        print '\nDoing a second sextractor run to unmask central galaxy. \n'
        analysis_thresh_lg=2;back_size_lg=128;detect_thresh_lg=2;detect_minarea_lg=60
        segname = run_SExtractor(hi_res_image,detect_thresh=detect_thresh_lg,analysis_thresh=analysis_thresh_lg,back_size=back_size_lg,detect_minarea=detect_minarea_lg)
        print '\nSegmentation map is named: '+segname
        
        'Open up the data'
        seg2data = fits.getdata(segname)
        segdata,segheader = fits.getdata('_mask.fits',header=True)
        
        'Detect sources from the segmentation map'
        from photutils import detect_sources
        segrefdata = detect_sources(seg2data, 3, npixels=5)#, filter_kernel=kernel) 
        segrefdata = segrefdata.data
        segrefname = re.sub('.fits','_ds.fits',segname)
        writeFITS(segrefdata,segheader,segrefname)    
        print '\nSource separated segmentation map is named: '+segrefname
        
        'Use detected source seg map to mask galaxies' #galvalues = [3531,5444,5496]
        print 'Unmask the galaxies in the mask from the original segmap. \n'
        segdatanew = unmaskgalaxy(segdata,'_mask.fits',segrefname=segrefname,segref=segrefdata,galvalues=galvalues)        
        writeFITS(segdatanew,segheader,'_mask.fits')
        
    if verbose:
        print_verbose_string('Carrying on')
        
    'replace the values in the segments in the segmentation map (i.e. stars) all to 1, all the background is still 0'
    iraf.imreplace('_mask.fits',1,lower=0.5)
    'multiply the mask (with 1s at the stars) by the high res image to get the star flux back - now have the flux model'
    iraf.imarith('_mask.fits','*','%s'%hi_res_image,'_fluxmod_cfht')
    
    'smooth the flux model'
    'increase size of mask, so more is subtracted'
    'the "1.5" in the next line should be a user-defined parameter that is given'
    'to the script; it controls how much of the low surface brightness'
    'emission in the outskirts of galaxies is subtracted. This choice'
    'depends on the science application'
    iraf.gauss('_fluxmod_cfht','_fluxmod_cfht_smoothed',width_mask,nsigma=4.)

    iraf.imreplace('_fluxmod_cfht_smoothed', -1, lower=0, upper=0)
    iraf.imreplace('_fluxmod_cfht_smoothed', 1, lower=-0.5)
    iraf.imreplace('_fluxmod_cfht_smoothed', 0, upper=-0.5)
    iraf.imarith('%s'%hi_res_image, '*','_fluxmod_cfht_smoothed', '_fluxmod_cfht_new')
    
    ' this is the key new step! we"re registering the CFHT image'
    ' to a frame that is 4x finer sampled than the Dragonfly image.'
    ' this avoids all the pixelation effects we had before.'
    '  (4x seems enough; but we could have it as a free parameter - need'
    ' to be careful as it occurs elsewhere in the scripts too) '
    iraf.blkrep('%s'%df_image,'_df_4',4,4)
    
    'register the flux model onto the same pixel scale as the dragonfly image'
    iraf.wregister('_fluxmod_cfht_new','_df_4','_fluxmod_dragonfly',interpo='linear',fluxcon='yes')

    return None
def imrep(inimage):
    iraf.imreplace(inimage, value='1')
예제 #19
0
def stacking(cllist,zpofflist,ref,zprefoff=0.0,stackname='stack',shiftsize=400):

    """
    """

    #Reset the IRAF tasks used in this routine.
    iraf.unlearn('imcalc')
    iraf.unlearn('imcombine')
    iraf.unlearn('imreplace')
    iraf.unlearn('xyxymatch')
    iraf.unlearn('geomap')
    iraf.unlearn('geotran')
    iraf.unlearn('imcopy')

    #Find reference image in reference directory. Check to make
    #sure that it is actually the image and not the mask file!
    #Grab the mask for adding to the mask list now.
    (refimg,refmask,expmap)=classify(ref+'/tu*.fits')
    zpref=pf.open(refimg)[0].header['MAGZERO']
#    zprefoff=NewfirmZPoffset[ref.split('/')[-1]]
    zprefoff=float(zprefoff)

    #Get 2MASS PSC positions for reference cluster image.
    catalog=get2masspsc(refimg)
    foo=file_check(ref+'/2mass_ref_stars.cdt',delete=True)
    foo=open(ref+'/2mass_ref_stars.cdt','w')
    for y in catalog:
        data=y.split()
        foo.write(data[6]+'\t'+data[7]+'\n')
    foo.close()

    #Create lists for files to be input into the stacking routine.
    foo=file_check('matchlist',delete=True)
    foo=file_check('scalelist',delete=True)
    foo=file_check('shiftlist',delete=True)
    foo=file_check('masklist',delete=True)
    foo=file_check('shiftmask',delete=True)
    foo=file_check('expmaplist',delete=True)
    (matchlist,scalelist,shiftlist,masklist,
     shiftmask,finalmasks,stacklist,stackmask,
     finalmasks2,expmaplist,shiftexp,expmaplist2)=(open('matchlist','w'),open('scalelist','w'),
                                        open('shiftlist','w'),open('masklist','w'),
                                        open('shiftmask','w'),open('finalmasks','w'),
                                        open('stacklist','w'),open('stackmask','w'),
                                        open('finalmasks2','w'),open('expmaplist','w'),
                                        open('shiftexp','w'),open('expmaplist2','w'))
    (xsize,ysize)=(np.array([]),np.array([]))
    
    
    #Step through all of the input cluster directories.
    i=0
    for x in cllist:
        #Find the image, mask, and exposure map files. Get zeropoints and
        #scale image to the reference image.
        scaleimg=x+'/scaled_to_'+ref.split('/')[-1]+'.fits'
        foo=file_check(scaleimg,delete=True)
        (img,mask,expmap)=classify(x+'/tu*.fits')
        imgzp=pf.open(img)[0].header['MAGZERO']
        (xs,ys)=(pf.open(img)[0].header['NAXIS1'],pf.open(img)[0].header['NAXIS2'])
        (xsize,ysize)=(np.append(xsize,xs),np.append(ysize,ys))

        imgzpoff=float(zpofflist[i])
#        imgzpoff=NewfirmZPoffset[x.split('/')[-1]]
        scale=scalecounts(imgzp+imgzpoff,zpref+zprefoff)
        iraf.imcalc(img,scaleimg,'im1*'+str(scale))

        #Get X,Y pixel positions of 2MASS sources from the 2MASS PSC
        #in the image. Use these to compute shifts relative to the
        #reference image using IRAF task geomap.
        foo=file_check(x+'/2mass_ref_stars.cdt',delete=True)
        foo=open(x+'/2mass_ref_stars.cdt','w')
        catalog=get2masspsc(scaleimg)
        for y in catalog:
            data=y.split()
            foo.write(data[6]+'\t'+data[7]+'\n')
        foo.close()
    
        #Match the 2MASS PSC positions with stars in the reference
        #image using xyxymatch. The matched source list is then fed
        #into geomap to get the X and Y shifts.
        foo=file_check(x+'/2mass_matched.cdt',delete=True)
        iraf.xyxymatch(x+'/2mass_ref_stars.cdt',ref+'/2mass_ref_stars.cdt',
                       x+'/2mass_matched.cdt','200.0',verbose='no')

        #Append all of the names of the files for the input and output filename
        #lists to be passed to IRAF tasks further down the line.
        matchlist.write(x+'/2mass_matched.cdt\n')
        scalelist.write(scaleimg+'\n')
        foo=file_check(x+'/scaled_and_shifted.fits',delete=True)
        shiftlist.write(x+'/scaled_and_shifted.fits['+str(shiftsize)+':'+\
                 str(int(np.max(xsize))+shiftsize)+','+str(shiftsize)+':'+\
                 str(int(np.max(ysize))+shiftsize)+']\n')
        stacklist.write(x+'/scaled_and_shifted.fits\n')
        file_check(x+'/mask_tmp.fits',delete=True)
        file_check(x+'/expmap_tmp.fits',delete=True)
        iraf.imarith(mask+'[1]','*',1000.0,x+'/mask_tmp.fits',pixtype='real')
        iraf.imarith(expmap+'[1]','*',1.0,x+'/expmap_tmp.fits',pixtype='real')
        offset=2.558435
        file_check(x+'/mask_tmp2.fits',delete=True)
        iraf.imcalc(x+'/mask_tmp.fits',x+'/mask_tmp2.fits','im1+'+str(offset))
        os.remove(x+'/mask_tmp.fits')
        masklist.write(x+'/mask_tmp2.fits\n')
        file_check(x+'/mask_shift.fits',delete=True)
        shiftmask.write(x+'/mask_shift.fits['+str(shiftsize)+':'+\
                    str(int(np.max(xsize))+shiftsize)+','+str(shiftsize)+':'+\
                    str(int(np.max(ysize))+shiftsize)+']\n')
        stackmask.write(x+'/mask_shift.fits\n')
        finalmasks.write(x+'/mask_final.fits\n')
        finalmasks2.write(x+'/mask_final.fits[0]\n')
        expmaplist.write(x+'/expmap_tmp.fits[0]\n')
        shiftexp.write(x+'/expmap_shift.fits['+str(shiftsize)+':'+\
                    str(int(np.max(xsize))+shiftsize)+','+str(shiftsize)+':'+\
                    str(int(np.max(ysize))+shiftsize)+']\n')
        expmaplist2.write(x+'/expmap_shift.fits\n')
        i += 1

    #Close all of the input and output filename lists to be passed to IRAF tasks.
    matchlist.close()
    scalelist.close()
    stacklist.close()
    masklist.close()
    shiftmask.close()
    finalmasks.close()
    shiftlist.close()
    stackmask.close()
    finalmasks2.close()
    expmaplist.close()
    expmaplist2.close()
    shiftexp.close()

    #Get the shifts between all input files (including the reference) and the
    #reference image itself.
    foo=file_check('shift.db',delete=True)
    iraf.geomap('@matchlist','shift.db',1.0,np.max(xsize),
                1.0,np.max(ysize),fitgeometry='shift',interactive='no',
                maxiter=2,function='legendre',verbose='no')

    #Shift the input images (including the reference) and associated mask files
    #to a common pixel grid. Add some padding around the individual frames (-99
    #in the images, 1 in the bad pixel masks) to ensure that the images will
    #combine properly.
    (maxx,maxy)=(np.max(xsize)+shiftsize+100.0,np.max(ysize)+shiftsize+100.0)
    iraf.geotran('@scalelist','@shiftlist','shift.db','@matchlist',geometry='linear',
                 boundary='constant',nlines=maxy,ncols=maxx,constant=-99.0)

    iraf.geotran('@masklist','@shiftmask','shift.db','@matchlist',geometry='linear',
                 boundary='constant',nlines=maxy,ncols=maxx,constant=1000.0,
                 nxblock=10000,nyblock=10000)
    
    iraf.geotran('@expmaplist','@shiftexp','shift.db','@matchlist',geometry='linear',
                 boundary='constant',nlines=maxy,ncols=maxx,constant=0.)

    for x in cllist:
        file_check(x+'/mask_final.fits',delete=True)
        shutil.copy(x+'/mask_shift.fits',x+'/mask_final.fits')
        iraf.hedit(x+'/scaled_and_shifted.fits[0]','BPM',x+'/mask_final.fits[0]',
                   add='yes',update='yes',verify='no')
    iraf.imreplace('@finalmasks2',0,upper=offset)
    iraf.imreplace('@finalmasks2',1,lower=offset)

    file_check(stackname,delete=True)
    file_check(stackname[:-5]+'_mask.pl',delete=True)
    file_check(stackname[:-5]+'_expmap.fits',delete=True)
    iraf.imcombine('@stacklist',stackname,bpmasks=stackname[:-5]+'_bpm',
                   masktype='goodval',reject='none',mclip='yes',lthresh='INDEF',hthresh='INDEF',
                   hsigma=10.0,lsigma='INDEF',nrejmasks=stackname[:-5]+'_nrej',
                   sigmas=stackname[:-5]+'_sigma',grow=2.5,nkeep=1,blank=-99.0,gain=8.0,rdnoise=35.0)
    iraf.imcombine('@expmaplist2',stackname[:-5]+'_expmap.fits',combine='sum')
    hdu=pf.open(stackname,mode='update')
    hdu[0].header['BPM']=stackname.split('/')[-1][:-5]+'_mask.pl'
    hdu[0].header['MAGZERO']=zpref+zprefoff
    hdu.close()

	#Fix the WCS information in the stacked image.
    copyhead(stackname,refimg,offset=shiftsize)
    applywcs(stackname,stackname[:-5]+'_wcs.fits')

    trash=['matchlist','scalelist','shiftlist','masklist','shiftmask','finalmasks',
            'shift.db','stacklist','finalmasks2','stackmask','tmp_wcs.fits','expmaplist',
            'expmaplist2','shiftexp']
    for x in trash:
        os.remove(x)
예제 #20
0
def deimos_standard(standard):
    '''Extract standard star and calculate sensitivit function.'''

    bstd = "%s_01_B" % standard
    rstd = "%s_01_R" % standard

    # Extract standard
    if get_head("%s.fits" % bstd, "SKYSUB"):
        iraf.apall(bstd,
                   output="",
                   inter=yes,
                   find=yes,
                   recenter=yes,
                   resize=yes,
                   edit=yes,
                   trace=yes,
                   fittrace=yes,
                   extract=yes,
                   extras=yes,
                   review=no,
                   background="none")
        iraf.apall(rstd,
                   output="",
                   inter=yes,
                   find=yes,
                   recenter=yes,
                   resize=yes,
                   edit=yes,
                   trace=yes,
                   fittrace=yes,
                   extract=yes,
                   extras=yes,
                   review=no,
                   background="none")
    else:
        iraf.apall(bstd,
                   output="",
                   inter=yes,
                   find=yes,
                   recenter=yes,
                   resize=yes,
                   edit=yes,
                   trace=yes,
                   fittrace=yes,
                   extract=yes,
                   extras=yes,
                   review=no,
                   background="fit")
        iraf.apall(rstd,
                   output="",
                   inter=yes,
                   find=yes,
                   recenter=yes,
                   resize=yes,
                   edit=yes,
                   trace=yes,
                   fittrace=yes,
                   extract=yes,
                   extras=yes,
                   review=no,
                   background="fit")

    # Fit the continuum
    #iraf.continuum("%s.ms" % bstd, output="s%s.ms" % bstd, lines=1, bands=1,
    #               type="fit", sample="*", naverage=1, function="chebyshev",
    #               order=15, low_reject=3.0, high_reject=5.0, niterate=10, grow=1.0,
    #               interac=yes)
    #iraf.continuum("%s.ms" % rstd, output="s%s.ms" % rstd, lines=1, bands=1,
    #               type="fit", sample="*", naverage=1, function="chebyshev",
    #               order=15, low_reject=3.0, high_reject=5.0, niterate=10, grow=1.0,
    #               interac=yes)

    # Create telluric
    iraf.splot("%s.ms" %
               bstd)  # Remove telluric and absorption, save as a%s.ms
    iraf.sarith("%s.ms" % bstd, "/", "a%s.ms" % bstd,
                "telluric.B.%s.fits" % bstd)
    iraf.imreplace("telluric.B.%s.fits" % bstd, 1.0, lower=0.0, upper=0.0)
    iraf.splot("telluric.B.%s.fits" %
               bstd)  # Remove stellar features and resave

    iraf.splot("%s.ms" %
               rstd)  # Remove telluric and absorption, save as a%s.ms
    iraf.sarith("%s.ms" % rstd, "/", "a%s.ms" % rstd,
                "telluric.R.%s.fits" % rstd)
    iraf.imreplace("telluric.R.%s.fits" % rstd, 1.0, lower=0.0, upper=0.0)
    iraf.splot("telluric.R.%s.fits" %
               rstd)  # Remove stellar features and resave

    # Create smoothed standard
    iraf.gauss("a%s.ms[*,1,1]" % bstd, "s%s.ms" % bstd, 5.0)
    iraf.sarith("%s.ms" % bstd, "/", "s%s.ms" % bstd, "ds%s.ms" % bstd)
    iraf.gauss("a%s.ms[*,1,1]" % rstd, "s%s.ms" % rstd, 5.0)
    iraf.sarith("%s.ms" % rstd, "/", "s%s.ms" % rstd, "ds%s.ms" % rstd)

    # Divide through by smoothed standard
    #iraf.sarith("%s.ms" % bstd, "/", "s%s.ms" % bstd, "ds%s.ms" % bstd)
    #iraf.sarith("%s.ms" % rstd, "/", "s%s.ms" % rstd, "ds%s.ms" % rstd)

    # Create and apply telluric correction
    #iraf.splot("%s.ms" % bstd) # Remove telluric, save as a%s.ms
    #iraf.splot("%s.ms" % rstd) # Remove telluric, save as a%s.ms
    #iraf.sarith("%s.ms" % bstd, "/", "a%s.ms" % bstd, "telluric.B.fits")
    #iraf.sarith("%s.ms" % rstd, "/", "a%s.ms" % rstd, "telluric.R.fits")
    #iraf.imreplace("telluric.B.fits", 1.0, lower=0.0, upper=0.0)
    #iraf.imreplace("telluric.R.fits", 1.0, lower=0.0, upper=0.0)
    iraf.telluric("ds%s.ms" % bstd,
                  "tds%s.ms" % bstd,
                  "telluric.B.%s.fits" % bstd,
                  xcorr=no,
                  tweakrms=no,
                  interactive=no,
                  sample='6850:6950,7575:7700')
    iraf.telluric("ds%s.ms" % rstd,
                  "tds%s.ms" % rstd,
                  "telluric.R.%s.fits" % rstd,
                  xcorr=no,
                  tweakrms=no,
                  interactive=no,
                  sample='6850:6950,7575:7700')

    # Define bandpasses for standard star calculation
    iraf.standard("tds%s.ms" % bstd,
                  "%s.B.std" % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  caldir='home$standards/',
                  observatory='Keck',
                  interac=yes,
                  star_name=standard,
                  airmass='',
                  exptime='')
    iraf.standard("tds%s.ms" % rstd,
                  "%s.R.std" % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  caldir='home$standards/',
                  observatory='Keck',
                  interac=yes,
                  star_name=standard,
                  airmass='',
                  exptime='')

    # Determine sensitivity function
    iraf.sensfunc('%s.B.std' % standard,
                  '%s.B.sens' % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  newextinction='extinct.dat',
                  observatory='Keck',
                  function='legendre',
                  order=4,
                  interactive=yes)
    iraf.sensfunc('%s.R.std' % standard,
                  '%s.R.sens' % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  newextinction='extinct.dat',
                  observatory='Keck',
                  function='legendre',
                  order=4,
                  interactive=yes)

    return
예제 #21
0
파일: deimos_pipe.py 프로젝트: cenko/python
def deimos_standard(standard):

    '''Extract standard star and calculate sensitivit function.'''
    
    bstd = "%s_01_B" % standard; rstd = "%s_01_R" % standard

    # Extract standard
    if get_head("%s.fits" % bstd, "SKYSUB"):
        iraf.apall(bstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                   edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                   review=no, background="none")
        iraf.apall(rstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                   edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                   review=no, background="none")
    else:
        iraf.apall(bstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                   edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                   review=no, background="fit")
        iraf.apall(rstd, output="", inter=yes, find=yes, recenter=yes, resize=yes,
                   edit=yes, trace=yes, fittrace=yes, extract=yes, extras=yes,
                   review=no, background="fit")

    # Fit the continuum
    #iraf.continuum("%s.ms" % bstd, output="s%s.ms" % bstd, lines=1, bands=1,
    #               type="fit", sample="*", naverage=1, function="chebyshev",
    #               order=15, low_reject=3.0, high_reject=5.0, niterate=10, grow=1.0,
    #               interac=yes)
    #iraf.continuum("%s.ms" % rstd, output="s%s.ms" % rstd, lines=1, bands=1,
    #               type="fit", sample="*", naverage=1, function="chebyshev",
    #               order=15, low_reject=3.0, high_reject=5.0, niterate=10, grow=1.0,
    #               interac=yes)

    # Create telluric
    iraf.splot("%s.ms" % bstd) # Remove telluric and absorption, save as a%s.ms
    iraf.sarith("%s.ms" % bstd, "/", "a%s.ms" % bstd, "telluric.B.%s.fits" % bstd)
    iraf.imreplace("telluric.B.%s.fits" % bstd, 1.0, lower=0.0, upper=0.0)
    iraf.splot("telluric.B.%s.fits" % bstd) # Remove stellar features and resave

    iraf.splot("%s.ms" % rstd) # Remove telluric and absorption, save as a%s.ms
    iraf.sarith("%s.ms" % rstd, "/", "a%s.ms" % rstd, "telluric.R.%s.fits" % rstd)
    iraf.imreplace("telluric.R.%s.fits" % rstd, 1.0, lower=0.0, upper=0.0)
    iraf.splot("telluric.R.%s.fits" % rstd) # Remove stellar features and resave
    
    # Create smoothed standard
    iraf.gauss("a%s.ms[*,1,1]" % bstd, "s%s.ms" % bstd, 5.0)
    iraf.sarith("%s.ms" % bstd, "/", "s%s.ms" % bstd, "ds%s.ms" % bstd)
    iraf.gauss("a%s.ms[*,1,1]" % rstd, "s%s.ms" % rstd, 5.0)
    iraf.sarith("%s.ms" % rstd, "/", "s%s.ms" % rstd, "ds%s.ms" % rstd)

    # Divide through by smoothed standard
    #iraf.sarith("%s.ms" % bstd, "/", "s%s.ms" % bstd, "ds%s.ms" % bstd)
    #iraf.sarith("%s.ms" % rstd, "/", "s%s.ms" % rstd, "ds%s.ms" % rstd)

    # Create and apply telluric correction
    #iraf.splot("%s.ms" % bstd) # Remove telluric, save as a%s.ms
    #iraf.splot("%s.ms" % rstd) # Remove telluric, save as a%s.ms
    #iraf.sarith("%s.ms" % bstd, "/", "a%s.ms" % bstd, "telluric.B.fits")
    #iraf.sarith("%s.ms" % rstd, "/", "a%s.ms" % rstd, "telluric.R.fits")
    #iraf.imreplace("telluric.B.fits", 1.0, lower=0.0, upper=0.0)
    #iraf.imreplace("telluric.R.fits", 1.0, lower=0.0, upper=0.0)
    iraf.telluric("ds%s.ms" % bstd, "tds%s.ms" % bstd, "telluric.B.%s.fits" % bstd,
                  xcorr=no, tweakrms=no, interactive=no, sample='6850:6950,7575:7700')
    iraf.telluric("ds%s.ms" % rstd, "tds%s.ms" % rstd, "telluric.R.%s.fits" % rstd,
                  xcorr=no, tweakrms=no, interactive=no, sample='6850:6950,7575:7700')

    # Define bandpasses for standard star calculation
    iraf.standard("tds%s.ms" % bstd, "%s.B.std" % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  caldir='home$standards/', observatory='Keck', interac=yes,
                  star_name=standard, airmass='', exptime='')
    iraf.standard("tds%s.ms" % rstd, "%s.R.std" % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  caldir='home$standards/', observatory='Keck', interac=yes,
                  star_name=standard, airmass='', exptime='')

    # Determine sensitivity function
    iraf.sensfunc('%s.B.std' % standard, '%s.B.sens' % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  newextinction='extinct.dat', observatory='Keck',
                  function='legendre', order=4, interactive=yes)
    iraf.sensfunc('%s.R.std' % standard, '%s.R.sens' % standard,
                  extinction='home$extinct/maunakeaextinct.dat',
                  newextinction='extinct.dat', observatory='Keck',
                  function='legendre', order=4, interactive=yes)

    return
예제 #22
0
def mkcombmask(combimg,
               inlist,
               sspref='sdfr',
               outpref='mc',
               minpix=250,
               hsigma=3,
               lsigma=10,
               conv='block 3 3',
               bpm='none',
               sigmap='none'):

    # load IRAF package
    iraf.nproto()

    # chceck combined image
    if not os.access(combimg, os.R_OK):
        print >> sys.stderr, 'cannot open combined image (%s)' % combimg
        return 1

    # open input list and check if it exists
    inimg_arr = check_input(inlist, sspref)
    if isinstance(inimg_arr, int):
        return 1

    # check output images
    outimg_arr = check_outpref(outpref, inimg_arr)
    if isinstance(outimg_arr, int):
        return 1

    if lsigma <= 0:
        print >> sy.stderr, 'invalid lsigma value (%f)' % lsigma
        return 1

    if hsigma <= 0:
        print >> sys.stderr, 'invalid hsigma value (%f)' % hsigma
        return 1

    # check convolution kernel name
    ret = 1
    param = conv.split()
    if len(param) == 1:
        if os.access(param[0], os.R_OK):
            conv = '@' + conv
            ret = 0
        else:
            print >> sys.stderr, 'convolution kernel file (%s) does not exist' % param[
                0]
    elif param[0] == 'block' and len(param) == 3:
        if param[1].isdigit() and param[2].isdigit():
            ret = 0
    elif param[0] == 'bilinear' and len(param) == 3:
        if param[1].isdigit() and param[2].isdigit() and int(
                param[1]) > 0 and int(param[2]) > 0:
            ret = 0
    elif param[0] == 'gauss' and len(param) == 5:
        if param[1].isdigit() and param[2].isdigit() and int(
                param[1]) > 0 and int(param[2]) > 0:
            if isfloat(param[3]) and isfloat(
                    param[4]) and float(param[3]) > 0 and float(param[4]) > 0:
                ret = 0

    if ret > 0:
        print >> sys.stderr, 'invalid convolve parameter (%s)' % conv
        return 1

    # check bad pixel mask
    if bpm.lower() != 'none':
        bpmex = 1
        if os.access(bpm, os.R_OK) == False:
            print >> sys.stderr, 'cannot read bad pixel mask (%s)' % bpm
            return 1
    else:
        bpmex = 0

    # prefix for temoprary images
    tmp = tempfile.NamedTemporaryFile(suffix='', prefix='', dir='/tmp')
    tmp_prefix = tmp.name
    tmp.close()

    # check sigma map
    if sigmap.lower() == 'none':
        tmp_sigma = ''
        tmp_mask = ''
    else:
        if os.access(sigmap, os.R_OK) == False:
            print >> sys.stderr, 'cannot read sigma map image (%s)' % sigmap
            return 1
        else:
            tmp_mask = tmp_prefix + 'mask' + os.path.basename(sigmap)
            tmp_sigma = tmp_prefix + 'sigma' + os.path.basename(sigmap)
            iraf.imcopy(sigmap, tmp_sigma, verbose='no')
            ret = iraf.imstat(sigmap,
                              nclip=50,
                              field='mode',
                              format='no',
                              Stdout=1)
            sigma_mode = float(ret[0])
            iraf.imreplace(tmp_sigma, sigma_mode, upper=0)
            iraf.imarith(sigmap, '*', -1, tmp_mask, verbose='no')
            iraf.imreplace(tmp_mask, 1, lower=0)
            iraf.imreplace(tmp_mask, 0, upper=0)
            iraf.imarith(tmp_mask, '*', -1, tmp_mask)
            iraf.imarith(tmp_mask, '+', 1, tmp_mask)
    #
    tmp_precombmask = tmp_prefix + 'premask' + os.path.basename(combimg)
    tmp_combmask = tmp_prefix + 'mask' + os.path.basename(combimg)
    iraf.unlearn('objmasks')
    try:
        iraf.objmasks(combimg,
                      tmp_precombmask,
                      omtype='boolean',
                      masks='',
                      convolve=conv,
                      lsigma=lsigma,
                      hsigma=hsigma,
                      hdetect='yes',
                      ldetect='yes',
                      minpix=minpix,
                      sigmas=tmp_sigma)
        iraf.objmasks(combimg,
                      tmp_combmask,
                      omtype='boolean',
                      masks=tmp_precombmask + '[pl]',
                      convolve=conv,
                      lsigma=lsigma,
                      hsigma=hsigma,
                      hdetect='yes',
                      ldetect='yes',
                      minpix=minpix,
                      sigmas=tmp_sigma)
        os.remove(tmp_precombmask)
    except:
        print >> sys.stderr, 'failed to execute iraf objmasks task for %s' % combimg
        remove_temp_all(tmp_prefix)
        return 1

    # remove the area with no sigma value
    tmp_combmask2 = tmp_prefix + 'mask2' + os.path.basename(combimg)
    if sigmap.lower() == 'none':
        iraf.imcopy(tmp_combmask + '[pl]', tmp_combmask2, verbose='no')
    else:
        iraf.imarith(tmp_combmask + '[pl]',
                     '*',
                     tmp_mask,
                     tmp_combmask2,
                     verbose='no')
    os.remove(tmp_combmask)

    # check if input images exist and fix bad pixel if requested
    iraf.unlearn('imcopy')
    iraf.unlearn('imshift')
    for i in range(len(inimg_arr)):

        # get offset values from header
        im = pyfits.open(inimg_arr[i])
        try:
            dx = float(im[0].header['dx'])
            dy = float(im[0].header['dy'])
            dxc = float(im[0].header['dxc'])
            dyc = float(im[0].header['dyc'])
            nx = int(im[0].header['NAXIS1'])
            ny = int(im[0].header['NAXIS2'])
        except:
            print >> sys.stderr, 'failed to get offset values from the header of %s' % inimg_arr[
                i]
            remove_temp_all(tmp_prefix)
            return 1
        im.close()

        # shift combined mask
        tmp_shiftimg = tmp_prefix + os.path.basename(outimg_arr[i])
        iraf.imshift(tmp_combmask2,
                     tmp_shiftimg,
                     dxc,
                     dyc,
                     boundary_typ='constant',
                     constant=0.0)
        tmp_shiftimg_reg = '%s[1:%d,1:%d]' % (tmp_shiftimg, nx, ny)
        #iraf.imcopy(tmp_shiftimg_reg, outimg_arr[i]+'[pl]',verbose='no')
        iraf.imcopy(tmp_shiftimg_reg, outimg_arr[i], verbose='no')
        if bpmex == 1:
            iraf.imarith(outimg_arr[i], '+', bpm, outimg_arr[i], verbose='no')
        convert_maskfits_int(outimg_arr[i], outimg_arr[i])
        os.remove(tmp_shiftimg)

    # remove all temporary files
    remove_temp_all(tmp_prefix)

    return 0
예제 #23
0
def maskStars(imageName):
  #read in the fits data and header
  imageHeader = fits.open(imageName+".fits")[0]
  
  #Read in the skysigma, skyv, and seeing (fwhm) from the header and set up other relevant values
  sigma = imageHeader.header['SKYSIGMA']
  threshold = 3.0 * sigma
  
  skyv = imageHeader.header['SKY']
  
  fwhm = imageHeader.header['SEEING']
  aper = 3.0 * fwhm
  annul = 5 * fwhm
  
  #Read in the galcut file
  galcut = open("galcut.file")
  galcutString = file.read(galcut)
  galcut.close()
  
  #Parse the galcut file into its variables
  galList = galcutString.split(' ')
  xCenter = float(galList[0])
  yCenter = float(galList[1])
  a = float(galList[2]) #Semimajor Axis
  eccent = float(galList[3]) #Eccentricity
  posAngle = float(galList[4]) #Position angle
  
  posAngleRad = (posAngle+90)*3.14159/180 
  b = a * eccent #Semiminor Axis
  na = -1*a
  nb = -1*b
  
  #Create a version of the r image with the sky added back in for the daofind procedure
  iraf.imdelete("withsky")
  iraf.imarith(imageName,'+',skyv,"withsky")

  # Load daophot package
  iraf.digiphot()
  iraf.daophot()  

  print("A. Find stars using daofind")

#DAOFIND  searches  the  IRAF  images image for local density maxima,
#    with a  full-width  half-maxima  of  datapars.fwhmpsf,  and  a  peak
#    amplitude  greater  than  findpars.threshold  * datapars.sigma above
#    the local background, and writes a list of detected objects  in  the
#    file  output.  
# Here we set the fwhm and sigma equal to those listed in the header.
# We set the datamin to -3*sigma = -1*threshold defined above
# The findpars.threshold is set to 4.5*sigma by default. You may have
# to alter this value for images where too few/many stars are found.


  #Configure 'datapars', 'findpars', and 'daofind'
  iraf.datapars.fwhmpsf=fwhm
  iraf.datapars.sigma=sigma
  iraf.datapars.datamax='indef'
  iraf.datapars.datamin=(-1)*threshold
  iraf.datapars.ccdread='RDNOISE'
  iraf.datapars.gain="GAIN"
  iraf.datapars.exposure="EXPTIME"
  iraf.datapars.airmass="AIRMASS"
  iraf.datapars.filter="FILTER"
  iraf.datapars.obstime="TIME-OBS"

  iraf.findpars.threshold=4.5
  iraf.findpars.roundhi=3
  iraf.findpars.roundlo=-3

  iraf.daofind.verify='no'
  iraf.daofind.verbose='no'
  
  #create the variable for the coordinate file
  allStars = imageName+'.coo'
  
  #Remove a previous coordinate file if one exists
  silentDelete(imageName+'.coo')

  #Find the stars in the aligned R image
  iraf.daofind("withsky",allStars)
  print("The file containing the data of the stars in the aligned R-image is ",allStars)
  print(" ") 

  if os.path.getsize(allStars) > 2239 :

   print("B. Separate stars inside and outside galaxy")
  
   #Delete existing files
   for f in ("temp.file","maskfile","maskfile.sat"):
     silentDelete(f)
  
   #Extract the coordinates from the allStars file, redirecting stdout to do so
   sys.stdout=open("temp.file","w")
   iraf.pdump(allStars,"xcenter,ycenter",'yes')
   sys.stdout = sys.__stdout__
  


  #Read the file to get the xy coordinate pairs in a list
   coords = open("temp.file")
   coordList = list(coords)
   countout=0
  
  #Create strings of xy pairs to write to files
   outGalString = ""
   for pair in coordList:
     #for each entry in the list, parse it into xy value integer pairs
     values = pair.split("  ")
     x = float(values[0])
     y = float(values[1])
    
    #Determine if the star lies within the galaxy-centered ellipse
     inGalaxy = False
     deltaX = x - xCenter
     deltaY = y - yCenter
     cdx = abs(deltaX)
     cdy = abs(deltaY)
     if (cdx < a and cdy < a):
       xt=(deltaX*math.cos(posAngleRad))+(deltaY*math.sin(posAngleRad))
       yt=(deltaY*math.cos(posAngleRad))-(deltaX*math.sin(posAngleRad))
       if(xt <= a and xt >= na and yt <= b and yt >= nb):
         inGalaxy = True
      
     if (not inGalaxy):
       outGalString += str(x) + " " + str(y) + "\n"
       countout=countout+1
 
  #Write the coordinate list to a file
   mask = open("maskfile","w")
   mask.write(outGalString)
   mask.close()
   print('')
   print("  ",countout," stars found outside galaxy")
   print('')
   if countout!=0 :

    print("C. Do photometry to find saturated stars")
  
    for f in ("maskfile.mag","maskfile.satmag","maskfile.sat"):
     silentDelete(f)
  
  #Configure 'centerpars', 'fitskypars','photpars'
    iraf.datapars.datamax=150000
    iraf.datapars.datamin='indef'
    iraf.centerpars.calgorithm="none"

    iraf.fitskypars.salgorithm="mode"
    iraf.fitskypars.annulus=annul
    iraf.fitskypars.dannulus=10

    iraf.photpars.apertures=fwhm
    iraf.phot.verify='no'
    iraf.phot.verbose='no'
  
  #Call 'phot' to get the data of the stars 
    iraf.phot (imageName,"maskfile","maskfile.mag")

    boexpr="PIER==305"
    iraf.pselect("maskfile.mag","maskfile.satmag",boexpr)

    sys.stdout=open("maskfile.sat","w")
    iraf.pdump("maskfile.satmag","xcenter,ycenter","yes")
    sys.stdout = sys.__stdout__
  
    print("D. Make mask of stars outside galaxy")
  
  #Delete the rmask if one exists
    silentDelete("rmask.fits")
  
  #Configure 'imedit'
    iraf.imedit.cursor="maskfile"
    iraf.imedit.display='no'
    iraf.imedit.autodisplay='no'
    iraf.imedit.aperture="circular"
    iraf.imedit.value=-1000
    iraf.imedit.default="e"
  
  #Replace the pixel values near the star coordinates with value -1000 using imedit
    iraf.imedit(imageName,"redit",radius=aper)
 
    iraf.imcopy.verbose='no'
  #Do the same for the saturated stars, but with larger apertures
    satMaskSize = os.path.getsize("maskfile.sat")
    if satMaskSize < 1 : 
     print("   No saturated stars found")
    if (satMaskSize!=0):
     iraf.imedit.cursor="maskfile.sat"
     iraf.imedit.radius=2*aper
     iraf.imedit("redit","rmask")
    else:
     iraf.imcopy("redit","rmask")
  
  #Replace good pixels with value 0 in 'rmask'
    iraf.imreplace.lower=-999
    iraf.imreplace.upper='indef'
    iraf.imreplace("rmask",0)

  #Replace bad pixels with value 1 in 'rmask'
    iraf.imreplace.lower='indef'
    iraf.imreplace.upper=-1000
    iraf.imreplace("rmask",1)
  
   
  #Remove the mask file if one already exists
    silentDelete(imageName+"mask.fits")
    iraf.imcopy("rmask",imageName+"mask")

    print(" ")
    print("The mask image is ",imageName+"mask")
    print("The masked image is ",imageName+"Masked")
    print(" ")
 
   else :
    print("No stars found outside galaxy, no mask created.")

  if os.path.getsize(allStars) < 2314 :
   print("No stars found, no mask created.")



  #Delete intermediate images 
  for f in ("rmask.fits","redit.fits","maskimage.fits","maskfile.mag","maskfile.satmag","temp.file","withsky.fits","mask.fits"):
    silentDelete(f)
def maskStars(imageName):
    #read in the fits data and header
    imageHeader = fits.open(imageName + ".fits")[0]

    #Read in the skysigma, skyv, and seeing (fwhm) from the header and set up other relevant values
    sigma = imageHeader.header['SKYSIGMA']
    threshold = 3.0 * sigma

    skyv = imageHeader.header['SKY']

    fwhm = imageHeader.header['SEEING']
    aper = 3.0 * fwhm
    annul = 5 * fwhm

    #Read in the galcut file
    galcut = open("galcut.file")
    galcutString = file.read(galcut)
    galcut.close()

    #Parse the galcut file into its variables
    galList = galcutString.split(' ')
    xCenter = float(galList[0])
    yCenter = float(galList[1])
    a = float(galList[2])  #Semimajor Axis
    eccent = float(galList[3])  #Eccentricity
    posAngle = float(galList[4])  #Position angle

    posAngleRad = (posAngle + 90) * 3.14159 / 180
    b = a * eccent  #Semiminor Axis
    na = -1 * a
    nb = -1 * b

    #Create a version of the r image with the sky added back in for the daofind procedure
    iraf.imdelete("withsky")
    iraf.imarith(imageName, '+', skyv, "withsky")

    # Load daophot package
    iraf.digiphot()
    iraf.daophot()

    print("A. Find stars using daofind")

    #DAOFIND  searches  the  IRAF  images image for local density maxima,
    #    with a  full-width  half-maxima  of  datapars.fwhmpsf,  and  a  peak
    #    amplitude  greater  than  findpars.threshold  * datapars.sigma above
    #    the local background, and writes a list of detected objects  in  the
    #    file  output.
    # Here we set the fwhm and sigma equal to those listed in the header.
    # We set the datamin to -3*sigma = -1*threshold defined above
    # The findpars.threshold is set to 4.5*sigma by default. You may have
    # to alter this value for images where too few/many stars are found.

    #Configure 'datapars', 'findpars', and 'daofind'
    iraf.datapars.fwhmpsf = fwhm
    iraf.datapars.sigma = sigma
    iraf.datapars.datamax = 'indef'
    iraf.datapars.datamin = (-1) * threshold
    iraf.datapars.ccdread = 'RDNOISE'
    iraf.datapars.gain = "GAIN"
    iraf.datapars.exposure = "EXPTIME"
    iraf.datapars.airmass = "AIRMASS"
    iraf.datapars.filter = "FILTER"
    iraf.datapars.obstime = "TIME-OBS"

    iraf.findpars.threshold = 4.5
    iraf.findpars.roundhi = 3
    iraf.findpars.roundlo = -3

    iraf.daofind.verify = 'no'
    iraf.daofind.verbose = 'no'

    #create the variable for the coordinate file
    allStars = imageName + '.coo'

    #Remove a previous coordinate file if one exists
    silentDelete(imageName + '.coo')

    #Find the stars in the aligned R image
    iraf.daofind("withsky", allStars)
    print(
        "The file containing the data of the stars in the aligned R-image is ",
        allStars)
    print(" ")

    if os.path.getsize(allStars) > 2239:

        print("B. Separate stars inside and outside galaxy")

        #Delete existing files
        for f in ("temp.file", "maskfile", "maskfile.sat"):
            silentDelete(f)

        #Extract the coordinates from the allStars file, redirecting stdout to do so
        sys.stdout = open("temp.file", "w")
        iraf.pdump(allStars, "xcenter,ycenter", 'yes')
        sys.stdout = sys.__stdout__

        #Read the file to get the xy coordinate pairs in a list
        coords = open("temp.file")
        coordList = list(coords)
        countout = 0

        #Create strings of xy pairs to write to files
        outGalString = ""
        for pair in coordList:
            #for each entry in the list, parse it into xy value integer pairs
            values = pair.split("  ")
            x = float(values[0])
            y = float(values[1])

            #Determine if the star lies within the galaxy-centered ellipse
            inGalaxy = False
            deltaX = x - xCenter
            deltaY = y - yCenter
            cdx = abs(deltaX)
            cdy = abs(deltaY)
            if (cdx < a and cdy < a):
                xt = (deltaX * math.cos(posAngleRad)) + (deltaY *
                                                         math.sin(posAngleRad))
                yt = (deltaY * math.cos(posAngleRad)) - (deltaX *
                                                         math.sin(posAngleRad))
                if (xt <= a and xt >= na and yt <= b and yt >= nb):
                    inGalaxy = True

            if (not inGalaxy):
                outGalString += str(x) + " " + str(y) + "\n"
                countout = countout + 1

    #Write the coordinate list to a file
        mask = open("maskfile", "w")
        mask.write(outGalString)
        mask.close()
        print('')
        print("  ", countout, " stars found outside galaxy")
        print('')
        if countout != 0:

            print("C. Do photometry to find saturated stars")

            for f in ("maskfile.mag", "maskfile.satmag", "maskfile.sat"):
                silentDelete(f)

    #Configure 'centerpars', 'fitskypars','photpars'
            iraf.datapars.datamax = 150000
            iraf.datapars.datamin = 'indef'
            iraf.centerpars.calgorithm = "none"

            iraf.fitskypars.salgorithm = "mode"
            iraf.fitskypars.annulus = annul
            iraf.fitskypars.dannulus = 10

            iraf.photpars.apertures = fwhm
            iraf.phot.verify = 'no'
            iraf.phot.verbose = 'no'

            #Call 'phot' to get the data of the stars
            iraf.phot(imageName, "maskfile", "maskfile.mag")

            boexpr = "PIER==305"
            iraf.pselect("maskfile.mag", "maskfile.satmag", boexpr)

            sys.stdout = open("maskfile.sat", "w")
            iraf.pdump("maskfile.satmag", "xcenter,ycenter", "yes")
            sys.stdout = sys.__stdout__

            print("D. Make mask of stars outside galaxy")

            #Delete the rmask if one exists
            silentDelete("rmask.fits")

            #Configure 'imedit'
            iraf.imedit.cursor = "maskfile"
            iraf.imedit.display = 'no'
            iraf.imedit.autodisplay = 'no'
            iraf.imedit.aperture = "circular"
            iraf.imedit.value = -1000
            iraf.imedit.default = "e"

            #Replace the pixel values near the star coordinates with value -1000 using imedit
            iraf.imedit(imageName, "redit", radius=aper)

            iraf.imcopy.verbose = 'no'
            #Do the same for the saturated stars, but with larger apertures
            satMaskSize = os.path.getsize("maskfile.sat")
            if satMaskSize < 1:
                print("   No saturated stars found")
            if (satMaskSize != 0):
                iraf.imedit.cursor = "maskfile.sat"
                iraf.imedit.radius = 2 * aper
                iraf.imedit("redit", "rmask")
            else:
                iraf.imcopy("redit", "rmask")

    #Replace good pixels with value 0 in 'rmask'
            iraf.imreplace.lower = -999
            iraf.imreplace.upper = 'indef'
            iraf.imreplace("rmask", 0)

            #Replace bad pixels with value 1 in 'rmask'
            iraf.imreplace.lower = 'indef'
            iraf.imreplace.upper = -1000
            iraf.imreplace("rmask", 1)

            #Remove the mask file if one already exists
            silentDelete(imageName + "mask.fits")
            iraf.imcopy("rmask", imageName + "mask")

            print(" ")
            print("The mask image is ", imageName + "mask")
            print("The masked image is ", imageName + "Masked")
            print(" ")

        else:
            print("No stars found outside galaxy, no mask created.")

    if os.path.getsize(allStars) < 2314:
        print("No stars found, no mask created.")

    #Delete intermediate images
    for f in ("rmask.fits", "redit.fits", "maskimage.fits", "maskfile.mag",
              "maskfile.satmag", "temp.file", "withsky.fits", "mask.fits"):
        silentDelete(f)
예제 #25
0
def ratir_doall(name, ra, dec, refdate, cat="SDSS-R9", varorder=1):
    """Full pipeline for image subtractions with RATIR data."""

    filts = ["r", "i", "Z", "Y", "J", "H"]

    pixscale_dict = {
        'r': 0.317,
        'i': 0.317,
        'Z': 0.292,
        'Y': 0.292,
        'J': 0.292,
        'H': 0.292
    }
    exptime_dict = {
        'r': 80.0,
        'i': 80.0,
        'Z': 67.11,
        'Y': 67.11,
        'J': 67.11,
        'H': 67.11
    }
    gain_dict = {
        'r': 1.23,
        'i': 1.23,
        'Z': 2.20,
        'Y': 2.20,
        'J': 2.40,
        'H': 2.40
    }
    readn_dict = {
        'r': 13.6,
        'i': 13.6,
        'Z': 14.70,
        'Y': 14.70,
        'J': 11.25,
        'H': 11.25
    }
    sat_dict = {
        'r': 50000.0,
        'i': 50000.0,
        'Z': 24000.0,
        'Y': 24000.0,
        'J': 24000.0,
        'H': 24000.0
    }

    dirs = glob.glob("20??????")
    dirs.remove(refdate)

    # Create directory structure
    for filt in filts:
        os.mkdir(filt)

    # Rename "new" files
    for dir in dirs:
        if os.path.exists("%s/stack_C0_r.fits" % dir) and os.path.exists(
                "%s/stack_C0_r.rms.fits" % dir):
            shutil.copy("%s/stack_C0_r.fits" % dir, "r/%s_r.fits" % dir)
            shutil.copy("%s/stack_C0_r.rms.fits" % dir,
                        "r/%s_r.rms.fits" % dir)
        if os.path.exists("%s/stack_C1_i.fits" % dir) and os.path.exists(
                "%s/stack_C1_i.rms.fits" % dir):
            shutil.copy("%s/stack_C1_i.fits" % dir, "i/%s_i.fits" % dir)
            shutil.copy("%s/stack_C1_i.rms.fits" % dir,
                        "i/%s_i.rms.fits" % dir)
        if os.path.exists("%s/stackA_C2_ZY.fits" % dir) and os.path.exists(
                "%s/stackA_C2_ZY.rms.fits" % dir):
            shutil.copy("%s/stackA_C2_ZY.fits" % dir, "Z/%s_Z.fits" % dir)
            shutil.copy("%s/stackA_C2_ZY.rms.fits" % dir,
                        "Z/%s_Z.rms.fits" % dir)
        if os.path.exists("%s/stackB_C2_ZY.fits" % dir) and os.path.exists(
                "%s/stackB_C2_ZY.rms.fits" % dir):
            shutil.copy("%s/stackB_C2_ZY.fits" % dir, "Y/%s_Y.fits" % dir)
            shutil.copy("%s/stackB_C2_ZY.rms.fits" % dir,
                        "Y/%s_Y.rms.fits" % dir)
        if os.path.exists("%s/stackA_C3_JH.fits" % dir) and os.path.exists(
                "%s/stackA_C3_JH.rms.fits" % dir):
            shutil.copy("%s/stackA_C3_JH.fits" % dir, "J/%s_J.fits" % dir)
            shutil.copy("%s/stackA_C3_JH.rms.fits" % dir,
                        "J/%s_J.rms.fits" % dir)
        if os.path.exists("%s/stackB_C3_JH.fits" % dir) and os.path.exists(
                "%s/stackB_C3_JH.rms.fits" % dir):
            shutil.copy("%s/stackB_C3_JH.fits" % dir, "H/%s_H.fits" % dir)
            shutil.copy("%s/stackB_C3_JH.rms.fits" % dir,
                        "H/%s_H.rms.fits" % dir)

    # Rename reference files
    shutil.copy("%s/stack_C0_r.fits" % refdate, "r/ref_r.fits")
    shutil.copy("%s/stack_C0_r.rms.fits" % refdate, "r/ref_r.rms.fits")
    shutil.copy("%s/stack_C1_i.fits" % refdate, "i/ref_i.fits")
    shutil.copy("%s/stack_C1_i.rms.fits" % refdate, "i/ref_i.rms.fits")
    shutil.copy("%s/stackA_C2_ZY.fits" % refdate, "Z/ref_Z.fits")
    shutil.copy("%s/stackA_C2_ZY.rms.fits" % refdate, "Z/ref_Z.rms.fits")
    shutil.copy("%s/stackB_C2_ZY.fits" % refdate, "Y/ref_Y.fits")
    shutil.copy("%s/stackB_C2_ZY.rms.fits" % refdate, "Y/ref_Y.rms.fits")
    shutil.copy("%s/stackA_C3_JH.fits" % refdate, "J/ref_J.fits")
    shutil.copy("%s/stackA_C3_JH.rms.fits" % refdate, "J/ref_J.rms.fits")
    shutil.copy("%s/stackB_C3_JH.fits" % refdate, "H/ref_H.fits")
    shutil.copy("%s/stackB_C3_JH.rms.fits" % refdate, "H/ref_H.rms.fits")

    # Create ds9 region file for OT location
    coofile = open("Coords.reg", "w")
    coofile.write('fk5;circle(%10.5f,%10.5f,1.0") # text={%s}' %
                  (ra, dec, name))
    coofile.close()

    # Get SDSS reference stars
    os.system("getsdss.pl -r 7.0 -f sdss.reg -p %10.5f %10.5f sdss.txt" %
              (ra, dec))

    # Get 2MASS stars
    os.system(
        "getastrom.pl -d 2mass -r 7.0 -f temp.reg %10.5f %10.5f 2mass.txt" %
        (ra, dec))
    tmass = Starlist("temp.reg")
    for star in tmass:
        star.mags["YMAG"] = star.mags["JMAG"] + 0.5 * (
            star.mags["JMAG"] - star.mags["HMAG"]) + 0.08
    tmass.write("2mass.reg")
    os.remove("temp.reg")

    # If no SDSS coverage, copy 2mass.reg to sdss.reg (kludge until PS1)
    if os.stat("sdss.txt")[6] == 0:
        shutil.copy("ps1.reg", "sdss.reg")

    # Loop over filters
    for filt in filts:

        iraf.chdir(filt)

        # Update ref header
        update_head("ref_%s.fits" % filt, ["PIXSCALE", "SATURATE"],
                    [pixscale_dict[filt], sat_dict[filt]])

        # Generate mask for reference
        iraf.imexpr("a == 0 ? 1 : 0", "ref_%s.mask.fits" % filt,
                    "ref_%s.fits" % filt)

        # Generate variance for reference
        iraf.imcopy("ref_%s.rms.fits" % filt, "ref_%s.var.fits" % filt)
        iraf.imreplace("ref_%s.var.fits" % filt,
                       1.0e31,
                       lower=INDEF,
                       upper=0.0)

        # Detect objects in reference
        iqobjs("ref_%s.fits" % filt,
               3.0,
               sat_dict[filt],
               wtimage="ref_%s.var.fits" % filt,
               skyval="0.0")

        # Tweak WCS in reference image
        p60scamp("ref_%s.fits" % filt,
                 distortdeg=1,
                 match=yes,
                 rms=True,
                 mask=True,
                 cat=cat)
        os.remove("ref_%s.cat" % filt)

        # Get reference stars for PSF matching
        sdss = Starlist("../sdss.reg")
        ref = Starlist("ref_%s.fits.stars" % filt)
        sdss.wcs2pix("ref_%s.fits" % filt)
        a, b = sdss.match(ref, maxnum=1000)
        a.write("psf_%s.reg" % filt)

        # Loop over "new images"
        ims = glob.glob("????????_%s.fits" % filt)
        for im in ims:

            # Update headers
            nstack = int(get_head(im, "EXPTIME") / exptime_dict[filt])
            update_head(im, ["GAIN", "READN", "SATURATE"], [
                nstack * gain_dict[filt], readn_dict[filt] / np.sqrt(nstack),
                sat_dict[filt]
            ])

            # Create variance files
            iraf.imcopy("%s.rms.fits" % im[:-5], "%s.var.fits" % im[:-5])
            iraf.imreplace("%s.var.fits" % im[:-5],
                           1.0e31,
                           lower=INDEF,
                           upper=0.0)

            # Create bad pixel mask
            iraf.imexpr("a == 0 ? 1 : 0", "%s.mask.fits" % im[:-5], im)

            # Update WCS for new images
            p60scamp(im, distortdeg=1, match=yes, rms=True, mask=True, cat=cat)
            os.remove("%s.cat" % im[:-5])

            # Detect objects and measure seeing
            iqobjs(im,
                   5.0,
                   sat_dict[filt],
                   wtimage="%s.var.fits" % im[:-5],
                   skyval="0.0")

            # Match sources for PSF determination
            newstars = Starlist("%s.stars" % im)
            newstars.pix2wcs(im)
            newstars.wcs2pix("ref_%s.fits" % filt)
            c, d = newstars.match(a, maxnum=1000)
            d.write("psf_%s.%s.reg" % (filt, im[:-5]))

            # If there was a problem with alignment, will be no PSF stars
            if not os.stat("psf_%s.%s.reg" % (filt, im[:-5]))[6] == 0:

                if varorder == 0:
                    #if (filt=="J") or (filt=="H"):
                    p60sdsssub(im,
                               "ref_%s.fits" % filt,
                               "../Coords.reg",
                               stamps="psf_%s.%s.reg" % (filt, im[:-5]),
                               nsx=2,
                               nsy=2,
                               ko=0,
                               distortdeg=1)
                else:
                    p60sdsssub(im,
                               "ref_%s.fits" % filt,
                               "../Coords.reg",
                               stamps="psf_%s.%s.reg" % (filt, im[:-5]),
                               nsx=5,
                               nsy=5,
                               ko=1,
                               distortdeg=1)

        # PSF photometry
        for im in ims:
            if os.path.exists("%s.sub.fits" % im[:-5]):
                psfphot(im,
                        "psf_%s.reg" % filt,
                        "../Coords.reg",
                        wtimage="ref_%s.var.fits" % filt,
                        varorder=varorder)

        # Photometry
        if (filt == "J") or (filt == "H") or (filt == "Y"):
            ratircal("%s.%s.dat" % (name, filt), ims, "../2mass.reg", filt)
        else:
            ratircal("%s.%s.dat" % (name, filt), ims, "../sdss.reg", filt)

        iraf.chdir("../")

    return
예제 #26
0
파일: agnspecred.py 프로젝트: jsamu/AGNKEY
def process():
    ovrsc = '[1:4,*]'
    trim = '[200:2046,50:200]'
    imglist = glob.glob('FORS2*.fits')
#    objdict = {}
#    objdict.clear()
    for img in imglist:
        hdu = pyfits.getheader(img)
        if 'OBJECT' in hdu:
            obj = hdu['OBJECT']
            if obj not in objdict:
                objdict[obj] = [img]
            else:
                objdict[obj].append(img)

    if 'STD' not in objdict:
        os.system('cp /dark/jsamuel/agn/standards/FORS2.2016-05-12T09:15:14.678.fits ./')
        objdict['STD'] = ['FORS2.2016-05-12T09:15:14.678.fits']
        os.system('cp /dark/jsamuel/agn/standards/FORS2.2016-05-12T04:24:38.547.fits ./')
        objdict['STD'].append('FORS2.2016-05-12T04:24:38.547.fits')

    stars = {'specphot-LTT7379':'l7379','specphot-LDS749B':'lds749b','specphot-EG274':'eg274','specphot-G138-31':'g13831','specphot-C-32d9927':'cd32','specphot-LTT9491':'l9491','specphot-LTT7987':'l7987'}

    i = 0
    for key in objdict.keys():
        if 'STD' in key:
            for img in objdict[key]:
                i = i + 1
                numstars = len(objdict['STD'])
                hds = pyfits.getheader(img)
                _starname = stars[hds['HIERARCH ESO OBS NAME']]
                if _starname in ['lds749b','g13831']:
                    print 'Bad standard, copying from 2016-05-12'
                    if not os.path.isdir('badstd'):
                        os.mkdir('badstd')
                    os.system('mv '+img+' ./badstd')
                    if i >= numstars:
                        objdict.pop('STD')
                        os.system('cp /dark/jsamuel/agn/standards/FORS2.2016-05-12T09:15:14.678.fits ./')
                        objdict['STD'] = ['FORS2.2016-05-12T09:15:14.678.fits']
                        os.system('cp /dark/jsamuel/agn/standards/FORS2.2016-05-12T04:24:38.547.fits ./')
                        objdict['STD'].append('FORS2.2016-05-12T04:24:38.547.fits')



    

    if os.path.isfile('biaslist'):
        os.remove('biaslist')

    if os.path.isfile('masterbias.fits'):
        os.remove('masterbias.fits')

    f = open('biaslist','w')
    for img in objdict['BIAS']:
        f.write(img+'\n')
    f.close()

    imglist = '@biaslist'
    name = 'masterbias.fits'
    hdb = pyfits.getheader(objdict['BIAS'][0])
    _gain = hdb['HIERARCH ESO DET OUT1 GAIN']
    _ron = hdb['HIERARCH ESO DET OUT1 RON']
    iraf.zerocombine(imglist,output=name,combine='average',reject='minmax',ccdtype='none',process='no',gain=_gain,rdnoise=_ron,Stdout=1)



    if os.path.isfile('flatlist'):
        os.remove('flatlist')

    if os.path.isfile('sciflatlist'):
        os.remove('sciflatlist')

    if os.path.isfile('stdflatlist'):
        os.remove('stdflatlist')

    if os.path.isfile('masterflat.fits'):
        os.remove('masterflat.fits')

    if os.path.isfile('scimasterflat.fits'):
        os.remove('scimasterflat.fits')

    if os.path.isfile('stdmasterflat.fits'):
        os.remove('stdmasterflat.fits')



        
    f = open('sciflatlist','w')
    for img in objdict['FLAT,LAMP']:
        hdu = pyfits.getheader(img)
        if hdu['HIERARCH ESO DPR TECH'] == 'SPECTRUM':
            f.write(img+'\n')
    f.close()

    j = 0
    f = open('stdflatlist','w')
    for img in objdict['FLAT,LAMP']:
        hdu = pyfits.getheader(img)
        if hdu['HIERARCH ESO DPR TECH'] == 'MOS':
            f.write(img+'\n')
            j = j + 1
    f.close()





    imglist = '@sciflatlist'
    name = 'scimasterflat.fits'
    hdf = pyfits.getheader(objdict['FLAT,LAMP'][0])
    _gain = hdf['HIERARCH ESO DET OUT1 GAIN']
    _ron = hdf['HIERARCH ESO DET OUT1 RON']
    iraf.flatcombine(imglist,output=name,combine='average',reject='avsigclip',ccdtype='none',process='no',subsets='yes',delete='no',clobber='no',gain=_gain,rdnoise=_ron,Stdout=1)


    if j == 0:
        imglist = '@sciflatlist'
    elif j >= 1:
        imglist = '@stdflatlist'
    name = 'stdmasterflat.fits'
    hdf = pyfits.getheader(objdict['FLAT,LAMP'][0])
    _gain = hdf['HIERARCH ESO DET OUT1 GAIN']
    _ron = hdf['HIERARCH ESO DET OUT1 RON']
    iraf.flatcombine(imglist,output=name,combine='average',reject='avsigclip',ccdtype='none',process='no',subsets='yes',delete='no',clobber='no',gain=_gain,rdnoise=_ron,Stdout=1)





    if os.path.isfile('tmasterbias.fits'):
        os.remove('tmasterbias.fits')

    fits = 'masterbias.fits'
    name = 'tmasterbias.fits'
    zcor = 'no'
    fcor = 'no'
    _zero = ''
    _flat = ''
    iraf.ccdproc(fits,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=_flat,Stdout=1)


    if os.path.isfile('tmasterflat.fits'):
        os.remove('tmasterflat.fits')

    if os.path.isfile('tscimasterflat.fits'):
        os.remove('tscimasterflat.fits')

    if os.path.isfile('tstdmasterflat.fits'):
        os.remove('tstdmasterflat.fits')



    fits = 'scimasterflat.fits'
    name = 'tscimasterflat.fits'
    zcor = 'yes'
    fcor = 'no'
    _zero = 'tmasterbias.fits'
    _flat = ''
    iraf.ccdproc(fits,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=_flat,Stdout=1)

    fits = 'stdmasterflat.fits'
    name = 'tstdmasterflat.fits'
    zcor = 'yes'
    fcor = 'no'
    _zero = 'tmasterbias.fits'
    _flat = ''
    iraf.ccdproc(fits,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=_flat,Stdout=1)
                




    if os.path.isfile('ntmasterflat.fits'):
        os.remove('ntmasterflat.fits')

    if os.path.isfile('ntscimasterflat.fits'):
        os.remove('ntscimasterflat.fits')

    if os.path.isfile('ntstdmasterflat.fits'):
        os.remove('ntstdmasterflat.fits')

    cal = 'tscimasterflat.fits'
    resp = 'ntscimasterflat.fits'
    _order = 100
    iraf.response(calibration=cal,normalization=cal,response=resp,interactive='no',function='legendre',order=_order,graphics='stdgraph')

    cal = 'tstdmasterflat.fits'
    resp = 'ntstdmasterflat.fits'
    _order = 100
    iraf.response(calibration=cal,normalization=cal,response=resp,interactive='no',function='legendre',order=_order,graphics='stdgraph')




##########

    ovrsc = '[1:4,*]'
    trim = '[200:2046,50:200]'
    
    fimg = 'ntscimasterflat'
    _area = '[1:150,*]'
    _value = 1.0
    iraf.imreplace(images=fimg+_area,value=_value)

    fimg = 'ntstdmasterflat'
    _area = '[1:150,*]'
    _value = 1.0
    iraf.imreplace(images=fimg+_area,value=_value)
    

    alist = glob.glob('*AGN*.fits')
    for f in alist:
        os.remove(f)
    slist = glob.glob('STD*.fits')
    for f in slist:
        os.remove(f)
    llist = glob.glob('LAMP*.fits')
    for f in llist:
        os.remove(f)


    zcor = 'yes'
    fcor = 'yes'
    _zero = 'tmasterbias.fits'
    sciflat = 'ntscimasterflat.fits'
    stdflat = 'ntstdmasterflat.fits'

    for key in objdict.keys():
        if 'AGN' in key:
            for img in objdict[key]:
                hds = pyfits.getheader(img)
                if 'EXPTIME' in hds:
                    if hds['EXPTIME'] >= 50.0:
                        num = img.rsplit('.',2)[1]
                        name = key+'_'+num
                        '''
                        iraf.ccdproc(img,output='trim_'+name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor='no',darkcor='no',flatcor='no',illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero='',flat='',Stdout=1)

                        _gain = hds['HIERARCH ESO DET OUT1 GAIN']
                        _ron = hds['HIERARCH ESO DET OUT1 RON']
                        cosmics.lacos('trim_'+name+'.fits', output='c_'+name+'.fits', gain=_gain, readn=_ron, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, verbose=True, interactive=False)

                        iraf.ccdproc('c_'+name,output=name,ccdtype='',noproc='no',fixpix='no',overscan='no',trim='no',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec='',trimsec='',zero=_zero,flat=sciflat,Stdout=1)
                        '''

                        iraf.ccdproc(img,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=sciflat,Stdout=1)

                    else:
                        pass


        elif 'STD' in key:
            for img in objdict[key]:
                num = img.rsplit('.',2)[1]
                name = key+'_'+num
                iraf.ccdproc(img,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=stdflat,Stdout=1)

        elif 'WAVE' in key:
            for img in objdict[key]:
                num = img.rsplit('.',2)[1]
                name = 'LAMP_'+num
                iraf.ccdproc(img,output=name,ccdtype='',noproc='no',fixpix='no',overscan='yes',trim='yes',zerocor=zcor,darkcor='no',flatcor=fcor,illumcor='no',fringecor='no',readcor='no',scancor='no',biassec=ovrsc,trimsec=trim,zero=_zero,flat=stdflat,Stdout=1)
예제 #27
0
        continue  #starting loop from top

    filename_list = filter(lambda x: x[0] == unique_filter,
                           zip(filters, filenames))

    fin = open(object_list, 'w+')
    fout = open(out_object_list, 'w+')

    for fn in filename_list:
        print >> fin, fn[1] + '[1]'
        print >> fout, 'r' + fn[1]
    fin.close()
    fout.close()

    if do_flat:
        #Making sure no division by zero occurs
        iraf.imreplace(flat_file, value=0.00001, upper=0, radius=0)

    iraf.noao.imred.ccdred.ccdproc.output = '@' + out_object_list
    iraf.noao.imred.ccdred.ccdproc.overscan = overboo
    iraf.noao.imred.ccdred.ccdproc.trim = trimboo
    iraf.noao.imred.ccdred.ccdproc.zerocor = biasboo
    iraf.noao.imred.ccdred.ccdproc.flatcor = flatboo
    iraf.noao.imred.ccdred.ccdproc.zero = join(biasdir, bias_file)
    iraf.noao.imred.ccdred.ccdproc.flat = flat_file

    iraf.noao.imred.ccdred.ccdproc('@' + object_list)

print bold("\nImreduce ended successfully")

###################################################################################################
예제 #28
0
def lris_standard(standards, xcorr=yes):
    '''Extract standard stars and calculate sensitivity functions.'''

    for ofile, nstd in standards:

        shutil.copy(ofile, "%s.fits" % nstd)

        # Extract standard
        if get_head("%s.fits" % nstd, "SKYSUB"):
            iraf.apall(nstd,
                       output="",
                       inter=yes,
                       find=yes,
                       recenter=yes,
                       resize=yes,
                       edit=yes,
                       trace=yes,
                       fittrace=yes,
                       extract=yes,
                       extras=yes,
                       review=no,
                       background="none")
        else:
            iraf.apall(nstd,
                       output="",
                       inter=yes,
                       find=yes,
                       recenter=yes,
                       resize=yes,
                       edit=yes,
                       trace=yes,
                       fittrace=yes,
                       extract=yes,
                       extras=yes,
                       review=no,
                       background="fit")

        if xcorr:
            # Cross correlate to tweak wavelength
            iraf.xcsao("%s.ms" % nstd,
                       templates=XCTEMPLATE,
                       correlate="wavelength",
                       logfiles="%s.xcsao" % ofile)

            # If a solution was found, apply shift
            try:
                xcsaof = open("%s.xcsao" % ofile)
                shift = float(xcsaof.readlines()[6].split()[14])
            except:
                shift = 0.0
                iraf.specshift("%s.ms" % nstd, -shift)

        # Create telluric
        iraf.splot("%s.ms" %
                   nstd)  # Remove telluric and absorption, save as a%s.ms
        iraf.sarith("%s.ms" % nstd, "/", "a%s.ms" % nstd,
                    "telluric.%s.fits" % nstd)
        iraf.imreplace("telluric.%s.fits" % nstd, 1.0, lower=0.0, upper=0.0)
        iraf.splot("telluric.%s.fits" %
                   nstd)  # Remove stellar features and resave

        # Create smoothed standard
        iraf.gauss("a%s.ms[*,1,1]" % nstd, "s%s.ms" % nstd, 5.0)
        iraf.sarith("%s.ms" % nstd, "/", "s%s.ms" % nstd, "ds%s.ms" % nstd)

        # Apply telluric correction
        iraf.telluric(
            "ds%s.ms" % nstd,
            "tds%s.ms" % nstd,
            "telluric.%s.fits" % nstd,
            xcorr=no,
            tweakrms=no,
            interactive=no,
            sample='4000:4010,6850:6975,7150:7350,7575:7725,8050:8400,8900:9725'
        )

        # Define bandpasses for standard star calculation
        obj = get_head("%s.fits" % nstd, "OBJECT")
        iraf.standard("tds%s.ms" % nstd,
                      "%s.std" % nstd,
                      extinction='home$extinct/maunakeaextinct.dat',
                      caldir='home$standards/',
                      observatory='Keck',
                      interac=yes,
                      star_name=obj,
                      airmass='',
                      exptime='')

        # Determine sensitivity function
        iraf.sensfunc('%s.std' % nstd,
                      '%s.sens' % nstd,
                      extinction='home$extinct/maunakeaextinct.dat',
                      newextinction='extinct.dat',
                      observatory='Keck',
                      function='legendre',
                      order=4,
                      interactive=yes)

    return
예제 #29
0
def combine_images(images,
                   output,
                   reference=None,
                   method='average',
                   zscale=1,
                   fitgeometry='general',
                   function='polynomial',
                   xxorder=3,
                   yyorder=3,
                   xyorder=3,
                   yxorder=3,
                   objects=None,
                   trim=0,
                   interactive=1,
                   maxiter=5,
                   reject=3,
                   sigma=None,
                   xrange=None,
                   yrange=None,
                   rectify=1,
                   thresh=2.0,
                   scale=0.125,
                   fwhm=4.0,
                   debug=0,
                   aoffset=0,
                   creject=None):
    '''This Routine will take a list of images and use rectify_image to rectify
   each with respect to referece.  It will then use imcombine to combine the
   images into one and output to "output".  Default method is 'average', but
   you can use any available to imcombine.  The rest of the arguments are sent
   to rectify_images.  If zscale=1, all the images are scaled to a common
   zmag (30).  Also, if a file with _sigma.fits is found for all input files,
   we combine them too.  If you specify a sigma, that file will hold the
   standard deviations from the files.'''
    names = get_files(images)
    if reference is None:
        reference = names[0]
        names = names[1:]

    pclip = -0.5
    lsigma = 3.
    hsigma = 3.
    nkeep = -2
    if creject:
        creject = "pclip"
    else:
        creject = "none"

    # Check to see if we have _sigma files for each input file
    if os.path.isfile(reference.replace('.fits', '_sigma.fits')):
        do_sigmas = 1
    else:
        do_sigmas = 0

    sigmas = []
    for name in names:
        if os.path.isfile(name.replace('.fits', '_sigma.fits')):
            sigmas.append(name.replace('.fits', '_sigma.fits'))
        else:
            do_sigmas = 0
            break

    # Put the reference image first, to ensure that all positional header keywords are
    #  valid.
    if do_sigmas:
        ref_sig = reference.replace('.fits', '_sigma.fits')
    update = 0
    if zscale:
        zmag = get_header(reference, "ZMAG", float)
        if zmag is not None and zmag != 26:
            update = 1
            zmagfac = num.power(10, (zmag - 30) / 2.5)
            if zmagfac != 1:
                print 'zmagfac = ', zmagfac
                iraf.imarith(reference, '/', zmagfac, reference)
                iraf.hedit(reference, "ZMAG", 30.0, add=1, verify=0)
                if do_sigmas:
                    iraf.imarith(ref_sig, '/', zmagfac, ref_sig)
                    iraf.hedit(ref_sig, "ZMAG", 30.0, add=1, verify=0)

    print "Using %s as reference" % (reference)

    if rectify:
        nuke(reference.replace('.fits', '_rec.fits'))
        iraf.imcopy(reference, reference.replace('.fits', '_rec.fits'))
        if do_sigmas:
            nuke(reference.replace('.fits', '_rec_sigma.fits'))
            iraf.imcopy(reference.replace('.fits', '_sigma.fits'),
                        reference.replace('.fits', '_rec_sigma.fits'))
        temps = [reference.replace('.fits', '_rec.fits')]
        if do_sigmas:
            sig_temps = [reference.replace('.fits', '_rec_sigma.fits')]
    else:
        temps = [reference]
        if do_sigmas: sig_temps = [ref_sig]

    i = 0
    for name in names:
        print name
        if rectify:
            temp = name.replace('.fits', '_rec.fits')
            nuke(temp)
            if do_sigmas:
                (x0, x1, y0, y1) = rectify_image(name,
                                                 reference,
                                                 output=temp,
                                                 fitgeometry=fitgeometry,
                                                 function=function,
                                                 xxorder=xxorder,
                                                 yyorder=yyorder,
                                                 xyorder=xyorder,
                                                 yxorder=yxorder,
                                                 objects=objects,
                                                 interactive=interactive,
                                                 maxiter=maxiter,
                                                 reject=reject,
                                                 xrange=xrange,
                                                 yrange=yrange,
                                                 thresh=thresh,
                                                 scale=scale,
                                                 fwhm=fwhm,
                                                 image_sigma=sigmas[i],
                                                 reference_sigma=ref_sig,
                                                 debug=debug,
                                                 aoffset=aoffset)
            else:
                (x0, x1, y0, y1) = rectify_image(name,
                                                 reference,
                                                 output=temp,
                                                 fitgeometry=fitgeometry,
                                                 function=function,
                                                 xxorder=xxorder,
                                                 yyorder=yyorder,
                                                 xyorder=xyorder,
                                                 yxorder=yxorder,
                                                 objects=objects,
                                                 interactive=interactive,
                                                 maxiter=maxiter,
                                                 reject=reject,
                                                 xrange=xrange,
                                                 yrange=yrange,
                                                 thresh=thresh,
                                                 scale=scale,
                                                 fwhm=fwhm,
                                                 debug=debug,
                                                 aoffset=aoffset)
        else:
            temp = name
        bpm = get_header(name, 'BPM', str)
        if bpm and rectify:
            bpm_fits = bpm.replace('.pl', '.fits')
            temp_bpm = bpm.replace('.pl', '_rec.fits')
            temp_bpm_pl = bpm.replace('.pl', '_rec.pl')
            nuke(bpm_fits)
            nuke(temp_bpm)
            nuke(temp_bpm_pl)
            iraf.imcopy(bpm, bpm_fits)
            iraf.imarith(bpm_fits, "*", 10.0, bpm_fits)
            if objects is None: sigmaobjects = 'geomap.objects'
            iraf.geotran(input=bpm_fits,
                         output=temp_bpm,
                         database='geomap.db',
                         transforms=sigmaobjects,
                         geometry='geometric',
                         interpolant="linear")
            iraf.imreplace(temp_bpm, lower=0.02, upper="INDEF", value=1.)
            iraf.imcopy(temp_bpm, temp_bpm_pl)
            iraf.hedit(temp, 'BPM', temp_bpm_pl, update=1, verify=0)
        if do_sigmas:
            if rectify:
                temp_sig = sigmas[i].replace('_sigma.fits', '_rec_sigma.fits')
                nuke(temp_sig)
                if objects is None:
                    sigmaobjects = 'geomap.objects'
                else:
                    sigmaobjects = objects

                iraf.geotran(input=sigmas[i],
                             output=temp_sig,
                             database='geomap.db',
                             transforms=sigmaobjects,
                             geometry='geometric',
                             interpolant="linear")
            else:
                temp_sig = sigmas[i]
        if rectify:
            if i == 0:
                xmin = x0
                ymin = y0
                xmax = x1
                ymax = y1
            else:
                xmin = max(xmin, x0)
                ymin = max(ymin, y0)
                xmax = min(xmax, x1)
                ymax = min(ymax, y1)
        if zscale:
            zmag = get_header(name, "ZMAG", float)
            if zmag is not None and zmag != 26:
                zmagfac = num.power(10, (zmag - 30) / 2.5)
                if zmagfac != 1:
                    print 'zmagfac = ', zmagfac
                    iraf.imarith(temp, '/', zmagfac, temp)
                    iraf.hedit(temp, 'ZMAG', 30.0, add=1, verify=0)
                    if do_sigmas:
                        iraf.imarith(temp_sig, '/', zmagfac, temp_sig)
                        iraf.hedit(temp_sig, 'ZMAG', 30.0, add=1, verify=0)

        temps.append(temp)
        if do_sigmas: sig_temps.append(temp_sig)
        i = i + 1
    Nimages = len(temps)
    temps = string.join(temps, ',')
    print "Combining ", temps
    nuke(output)
    if sigma is not None:
        iraf.imcombine(temps,
                       output,
                       combine=method,
                       sigma=sigma,
                       masktyp='badvalue',
                       maskval=1.,
                       reject=creject,
                       lsigma=lsigma,
                       hsigma=hsigma,
                       nkeep=nkeep)
    else:
        iraf.imcombine(temps,
                       output,
                       combine=method,
                       masktyp='badvalue',
                       maskval=1.,
                       reject=creject,
                       lsigma=lsigma,
                       hsigma=hsigma,
                       nkeep=nkeep)

    if do_sigmas:
        Ns = []
        for this in sig_temps:
            N = this.replace('.fits', '_N.fits')
            nuke(N)
            iraf.imcopy(this, N)
            iraf.imreplace(N, lower=0.01, upper="INDEF", value=1)
            Ns.append(N)
        sig_temps = string.join(sig_temps, ',')
        Ns = string.join(Ns, ',')
        iraf.imfunction(sig_temps, sig_temps, 'square')
        file = output.replace('.fits', '_sigma.fits')
        nuke(file)
        iraf.imcombine(sig_temps, file, combine='sum')
        if method == 'average':
            nuke("N.fits")
            iraf.imcombine(Ns, 'N.fits', combine='sum')
            iraf.imfunction('N.fits', 'N.fits', 'square')
            iraf.imarith(file, '/', 'N.fits', file)
        iraf.imfunction(file, file, 'sqrt')
        iraf.imfunction(sig_temps, sig_temps, 'sqrt')
    if update:
        iraf.hedit(output, "ZMAG", 30.0, verify=0, add=1)
    #nuke('temp?.fits')

    # Now, let's clean up the gain and rdnoise headers, as they don't seem to
    #  be handled in the PANIC pipeline.  NOTE:  we really need a noise map, but
    #  for now, we'll deal with just global values.
    gain = get_header(output, "gain", float)
    rdnoise = get_header(output, "rdnoise", float)
    if gain is None:
        # have to compute it from scratch
        egain = get_header(output, "egain", float)
        enoise = get_header(output, "enoise", float)
        nloop = get_header(output, "nloops", int)
        i = 1
        key = ""
        # This seems to be the only safe way to compute this.  Can't trust
        #   NDITHERS
        while key is not None:
            key = get_header(output, "imcmb%03d" % (i), str)
            i = i + 1
        ndither = i - 1
        print "N, ndither, nloop, egain, enoise = ", Nimages, ndither, nloop, egain, enoise
        gain = egain * Nimages * nloop * ndither
        rdnoise = enoise * num.sqrt(Nimages * nloop * ndither)
    else:
        gain = gain * Nimages
        rdnoise = rdnoise * num.sqrt(Nimages)
    iraf.hedit(output, "gain", gain, verify=0, add=1)
    iraf.hedit(output, "rdnoise", rdnoise, verify=0, add=1)

    # If requested, trim to the common regions of the combined images
    if rectify and trim and Nimages > 1:
        iraf.imcopy(output + "[%d:%d,%d:%d]" % (xmin, xmax, ymin, ymax),
                    output.replace('.fits', '_trim.fits'))
예제 #30
0
def lacos_im(_input,
             _output='clean.fits',
             outmask='mask.fits',
             gain=1.3,
             readn=9,
             xorder=9,
             yorder=9,
             sigclip=4.5,
             sigfrac=0.5,
             objlim=1,
             skyval=0,
             niter=2,
             verbose=True,
             interactive=False):
    import floyds
    from floyds.util import delete
    import sys, re, os, string
    from pyraf import iraf
    import numpy as np

    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # make temporary files
    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits',\
                                                     'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits',\
                                                  'starreject.fits'
    inputmask, gfirstsel = 'inputmask.fits', 'gfirstsel.fits'
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    # initialize loop
    usegain = gain
    i = 1
    stop = 'no'
    previous = 0
    if not _output: _output = _input

    arrayinput, headerinput = floyds.cosmics.fromfits(_input, verbose=False)
    floyds.cosmics.tofits(outmask,
                          np.float32(arrayinput - arrayinput),
                          headerinput,
                          verbose=False)

    delete(oldoutput)
    if skyval > 0:
        arrayoldoutput = arrayinput + skyval
    else:
        arrayoldoutput = arrayinput
    floyds.cosmics.tofits(oldoutput,
                          np.float32(arrayoldoutput),
                          headerinput,
                          verbose=False)
    # start iterations
    while stop == 'no':
        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        delete(blk)
        delete(lapla)
        delete(deriv2)
        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF', radius=0)
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")
        delete(med5)
        # create model of background flux - 5x5 box should exclude all CRs
        iraf.median(oldoutput,
                    med5,
                    5,
                    5,
                    zlo='INDEF',
                    zhi='INDEF',
                    verbose='no')
        iraf.imreplace(med5, 0.0001, upper=0, lower='INDEF', radius=0)
        # create noise model
        delete(noise)
        iraf.imutil.imexpr(expr='sqrt(a*' + str(usegain) + '+' + str(readn) +
                           '**2)/' + str(usegain),
                           a=med5,
                           output=noise,
                           verbose='no')
        # divide Laplacian by noise model
        delete(sigmap)
        iraf.imarith(deriv2, "/", noise, sigmap)
        # Laplacian of blkreplicated image counts edges twice:
        iraf.imarith(sigmap, "/", 2., sigmap)
        # removal of large structure (bright, extended objects)
        delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        arraysigmap, headersigmap = floyds.cosmics.fromfits(sigmap,
                                                            verbose=False)
        arraymed5, headermed5 = floyds.cosmics.fromfits(med5, verbose=False)
        arraysigmap = arraysigmap - arraymed5
        iraf.imarith(sigmap, "-", med5, sigmap)
        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions

        delete(firstsel)
        iraf.imcopy(sigmap, firstsel, verbose='no')
        iraf.imreplace(firstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(firstsel, 1, lower=0.1, upper='INDEF', radius=0)
        #		arraygfirst=arraysigmap
        #		arraygfirst = np.where(arraygfirst<sigclip,0,arraygfirst)
        #		arraygfirst = np.where(arraygfirst>0.1,1,arraygfirst)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        delete(med3)
        delete(med7)
        iraf.median(oldoutput,
                    med3,
                    3,
                    3,
                    zlo='INDEF',
                    zhi='INDEF',
                    verbose='no')
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(med3, "-", med7, med3)
        iraf.imarith(med3, "/", noise, med3)
        iraf.imreplace(med3, 0.01, upper=0.01, lower='INDEF', radius=0)
        # compare CR flux to object flux
        delete(starreject)
        iraf.imutil.imexpr(expr="(a*b)/c",
                           a=firstsel,
                           b=sigmap,
                           c=med3,
                           output=starreject,
                           verbose='no')
        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF', radius=0)
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(firstsel, "*", starreject, firstsel)
        # grow CRs by one pixel and check in original sigma map
        delete(gfirstsel)
        iraf.convolve(firstsel, gfirstsel, '_gkernel')
        iraf.imreplace(gfirstsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(gfirstsel, "*", sigmap, gfirstsel)
        iraf.imreplace(gfirstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(gfirstsel, 1, lower=0.1, upper='INDEF', radius=0)
        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip
        delete(finalsel)
        iraf.convolve(gfirstsel, finalsel, '_gkernel')
        iraf.imreplace(finalsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(finalsel, "*", sigmap, finalsel)
        iraf.imreplace(finalsel, 0, upper=sigcliplow, lower='INDEF', radius=0)
        iraf.imreplace(finalsel, 1, lower=0.1, upper='INDEF', radius=0)
        # determine number of CRs found in this iteration
        delete(gfirstsel)
        iraf.imutil.imexpr(expr="(1-b)*a",
                           a=outmask,
                           b=finalsel,
                           output=gfirstsel,
                           verbose='no')

        npix = iraf.imstat(gfirstsel,
                           fields="npix",
                           lower=0.5,
                           upper='INDEF',
                           Stdout=1)
        # create cleaned output image; use 3x3 median with CRs excluded
        delete(med5)
        iraf.imarith(outmask, "+", finalsel, outmask)
        iraf.imreplace(outmask, 1, lower=1, upper='INDEF', radius=0)

        delete(inputmask)
        iraf.imutil.imexpr(expr="(1-10000*a)",
                           a=outmask,
                           output=inputmask,
                           verbose='no')
        iraf.imarith(oldoutput, "*", inputmask, inputmask)
        delete(med5)
        iraf.median(inputmask,
                    med5,
                    5,
                    5,
                    zloreject=-9999,
                    zhi='INDEF',
                    verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        if i > 1: delete(_output)

        delete(_output)
        iraf.imutil.imexpr(expr="(1.-b)*a+c",
                           a=oldoutput,
                           b=outmask,
                           c=med5,
                           output=_output,
                           verbose='no')

        # cleanup and get ready for next iteration
        delete(oldoutput)
        iraf.imcopy(_output, oldoutput, verbose='no')

        if npix == 0: stop = 'yes'
        i = i + 1
        if i > niter: stop = 'yes'
        # delete temp files
        delete(blk + "," + lapla + "," + deriv2 + "," + med5)
        delete(med3 + "," + med7 + "," + noise + "," + sigmap)
        delete(firstsel + "," + starreject + "," + gfirstsel)
        delete(finalsel + "," + inputmask)

    if skyval > 0: iraf.imarith(_output, "-", skyval, _output)
    delete('_kernel' + "," + '_gkernel')
    delete(oldoutput)
예제 #31
0
파일: cosmics.py 프로젝트: svalenti/pessto
def lacos_im(_input, _output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, skyval=0, niter=2, verbose=True, interactive=False):
    # print "LOGX:: Entering `lacos_im` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import delete
    import sys
    import re
    import os
    import string
    from pyraf import iraf
    import numpy as np
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # make temporary files
    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits', 'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits', 'starreject.fits'
    inputmask, gfirstsel = 'inputmask.fits', 'gfirstsel.fits'
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    # initialize loop
    usegain = gain
    i = 1
    stop = 'no'
    previous = 0
    if not _output:
        _output = _input

    arrayinput, headerinput = ntt.cosmics.fromfits(_input, verbose=False)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayinput - arrayinput), headerinput, verbose=False)

    delete(oldoutput)
    if skyval > 0:
        arrayoldoutput = arrayinput + skyval
    else:
        arrayoldoutput = arrayinput
    ntt.cosmics.tofits(oldoutput, np.float32(
        arrayoldoutput), headerinput, verbose=False)
    # start iterations
    while stop == 'no':
        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        delete(blk)
        delete(lapla)
        delete(deriv2)
        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF', radius=0)
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")
        delete(med5)
        # create model of background flux - 5x5 box should exclude all CRs
        iraf.median(oldoutput, med5, 5, 5, zlo='INDEF',
                    zhi='INDEF', verbose='no')
        iraf.imreplace(med5, 0.0001, upper=0, lower='INDEF', radius=0)
        # create noise model
        delete(noise)
        iraf.imutil.imexpr(expr='sqrt(a*' + str(usegain) + '+' + str(readn) +
                           '**2)/' + str(usegain), a=med5, output=noise, verbose='no')
        # divide Laplacian by noise model
        delete(sigmap)
        iraf.imarith(deriv2, "/", noise, sigmap)
        # Laplacian of blkreplicated image counts edges twice:
        iraf.imarith(sigmap, "/", 2., sigmap)
        # removal of large structure (bright, extended objects)
        delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        arraysigmap, headersigmap = ntt.cosmics.fromfits(sigmap, verbose=False)
        arraymed5, headermed5 = ntt.cosmics.fromfits(med5, verbose=False)
        arraysigmap = arraysigmap - arraymed5
        iraf.imarith(sigmap, "-", med5, sigmap)
        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions

        delete(firstsel)
        iraf.imcopy(sigmap, firstsel, verbose='no')
        iraf.imreplace(firstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(firstsel, 1, lower=0.1, upper='INDEF', radius=0)
#		arraygfirst=arraysigmap
#		arraygfirst = np.where(arraygfirst<sigclip,0,arraygfirst)
#		arraygfirst = np.where(arraygfirst>0.1,1,arraygfirst)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        delete(med3)
        delete(med7)
        iraf.median(oldoutput, med3, 3, 3, zlo='INDEF',
                    zhi='INDEF', verbose='no')
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(med3, "-", med7, med3)
        iraf.imarith(med3, "/", noise, med3)
        iraf.imreplace(med3, 0.01, upper=0.01, lower='INDEF', radius=0)
        # compare CR flux to object flux
        delete(starreject)
        iraf.imutil.imexpr(expr="(a*b)/c", a=firstsel, b=sigmap,
                           c=med3, output=starreject, verbose='no')
        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF', radius=0)
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(firstsel, "*", starreject, firstsel)
        # grow CRs by one pixel and check in original sigma map
        delete(gfirstsel)
        iraf.convolve(firstsel, gfirstsel, '_gkernel')
        iraf.imreplace(gfirstsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(gfirstsel, "*", sigmap, gfirstsel)
        iraf.imreplace(gfirstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(gfirstsel, 1, lower=0.1, upper='INDEF', radius=0)
        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip
        delete(finalsel)
        iraf.convolve(gfirstsel, finalsel, '_gkernel')
        iraf.imreplace(finalsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(finalsel, "*", sigmap, finalsel)
        iraf.imreplace(finalsel, 0, upper=sigcliplow, lower='INDEF', radius=0)
        iraf.imreplace(finalsel, 1, lower=0.1, upper='INDEF', radius=0)
        # determine number of CRs found in this iteration
        delete(gfirstsel)
        iraf.imutil.imexpr(expr="(1-b)*a", a=outmask,
                           b=finalsel, output=gfirstsel, verbose='no')

        npix = iraf.imstat(gfirstsel, fields="npix",
                           lower=0.5, upper='INDEF', Stdout=1)
        # create cleaned output image; use 3x3 median with CRs excluded
        delete(med5)
        iraf.imarith(outmask, "+", finalsel, outmask)
        iraf.imreplace(outmask, 1, lower=1, upper='INDEF', radius=0)

        delete(inputmask)
        iraf.imutil.imexpr(expr="(1-10000*a)", a=outmask,
                           output=inputmask, verbose='no')
        iraf.imarith(oldoutput, "*", inputmask, inputmask)
        delete(med5)
        iraf.median(inputmask, med5, 5, 5, zloreject=-
                    9999, zhi='INDEF', verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        if i > 1:
            delete(_output)

        delete(_output)
        iraf.imutil.imexpr(expr="(1.-b)*a+c", a=oldoutput,
                           b=outmask, c=med5, output=_output, verbose='no')

        # cleanup and get ready for next iteration
        delete(oldoutput)
        iraf.imcopy(_output, oldoutput, verbose='no')

        if npix == 0:
            stop = 'yes'
        i = i + 1
        if i > niter:
            stop = 'yes'
        # delete temp files
        delete(blk + "," + lapla + "," + deriv2 + "," + med5)
        delete(med3 + "," + med7 + "," + noise + "," + sigmap)
        delete(firstsel + "," + starreject + "," + gfirstsel)
        delete(finalsel + "," + inputmask)

    if skyval > 0:
        iraf.imarith(_output, "-", skyval, _output)
    delete('_kernel' + "," + '_gkernel')
    delete(oldoutput)
예제 #32
0
              reject='minmax',
              first=no,
              w1=INDEF,
              w2=INDEF,
              dw=INDEF,
              nw=INDEF,
              log=no,
              scale='none',
              weight='none',
              zero='none',
              nlow='0',
              nhigh='90',
              nkeep='1')

### Shouldnt be necessary, but incase there are huge spikes cut them off.
iraf.imreplace(images='fullspec*', value=50, lower=50, upper=INDEF)
iraf.imreplace(images='fullspec*', value=-10, lower=INDEF, upper=-10)

### Fix exposure times. They are off by the number of orders in the trace
### from the summing of orders part

norders = 91.0  #115.0 updated to reflect ignoring edge orders

flist = open('targets_extracted')
for ifile in flist:
    ifile = 'fullspec' + ifile.strip()
    exptime = iraf.hsel(ifile, 'exptime', 'yes', Stdout=1)[0]
    print ifile, exptime
    iraf.hedit(ifile,
               'exptime',
               value=float(exptime) / norders,
예제 #33
0
                       fields='mean',
                       format='no',
                       Stdout=1)[0]
    median = iraf.imstat('master$flat-' + filter,
                         fields='midpt',
                         format='no',
                         Stdout=1)[0]

    iraf.imarith(operand1='master$flat-' + filter,
                 op='/',
                 operand2=median,
                 result='master$norm-flat-' + filter)

    # Replace the values up to 0.5 with 0
    iraf.imreplace('master$norm-flat-' + filter,
                   value=0.0,
                   lower='INDEF',
                   upper=0.5)

    ###########################################################################
    # Make comment

    if not config.noReduce:
        iraf.hedit('master$norm-flat-' + filter,
                   'OBS_I',
                   'Combined flats, bias removed',
                   add='yes',
                   ver='no')

    ###########################################################################

    print