예제 #1
0
def test_simple(tempfiles):
    n = 2
    files = tempfiles[:n]

    for i in range(n):
        data = np.full((100, 100), 5, dtype=float)
        fits.writeto(files[i], data)

    flat, fhead = combine_flat(files, "common", "", extension=0)

    assert isinstance(flat, np.ndarray)
    assert flat.shape[0] == 100
    assert flat.shape[1] == 100
    assert np.all(flat == 5 * n)

    n = 6
    files = tempfiles[:n]

    for i in range(n):
        data = np.full((200, 100), 5, dtype=float)
        fits.writeto(files[i], data, overwrite=True)

    flat, fhead = combine_flat(files, "common", "", extension=0, window=50)

    assert isinstance(flat, np.ndarray)
    assert flat.shape[0] == 200
    assert flat.shape[1] == 100
    assert np.all(flat == 5 * n)
예제 #2
0
def test_flat(instrument, mode, files, mask):
    if len(files["flat"]) == 0:
        pytest.skip(f"No flat files for instrument {instrument}")

    flat, fhead = combine_flat(files["flat"],
                               instrument,
                               mode,
                               window=50,
                               mask=mask)

    assert isinstance(flat, np.ma.masked_array)
    assert isinstance(fhead, fits.Header)

    assert flat.ndim == 2
    assert flat.shape[0] > 1
    assert flat.shape[1] > 1
예제 #3
0
파일: conftest.py 프로젝트: ivh/PyReduce
def flat(instrument, mode, files, extension, mask, bias, output_dir):
    """Load or if necessary create the flat field calibration data

    Parameters
    ----------
    instrument : str
        instrument name
    mode : str
        observing mode
    files : dict(str:str)
        calibration file names
    extension : int
        fits data extension
    mask : array(bool)
        Bad pixel mask
    bias : array(float)
        bias calibration data
    output_dir : str
        output directory

    Returns
    -------
    flat : array(float)
        flat field calibration data
    fhead : fits.header
        flat information
    """

    flatfile = os.path.join(output_dir, "test_flat.fits")
    try:
        flat = fits.open(flatfile)
        fhead, flat = flat[0].header, flat[0].data
        flat = np.ma.masked_array(flat, mask=mask)
    except FileNotFoundError:
        bias, _ = bias
        flat, fhead = combine_flat(
            files["flat"],
            instrument,
            mode,
            extension=extension,
            bias=bias,
            window=50,
            mask=mask,
        )
        fits.writeto(flatfile, data=flat.data, header=fhead, overwrite=True)

    return flat, fhead
예제 #4
0
파일: test_flat.py 프로젝트: ivh/PyReduce
def test_flat(instrument, mode, files, extension, mask):
    flat, fhead = combine_flat(
        files["flat"],
        instrument,
        mode,
        extension=extension,
        bias=0,
        window=50,
        mask=mask,
    )

    assert isinstance(flat, np.ma.masked_array)
    assert isinstance(fhead, fits.Header)

    assert flat.ndim == fhead["NAXIS"]
    assert flat.shape[0] == fhead["NAXIS1"] - 100  # remove window from both sides
    assert flat.shape[1] == fhead["NAXIS2"]
예제 #5
0
    base_dir=base_dir,
    input_dir=input_dir,
    output_dir=output_dir,
    configuration=config,
    # order_range=(0, 25),
)
files = data[0]["files"]
mask = data[0]["mask"]
bias, bhead = data[0]["bias"]
orders, column_range = data[0]["orders"]
wave, coef, linelist = data[0]["wavecal"]
xwd = config["wavecal"]["extraction_width"]
nrow, ncol = bias.shape
nord = len(orders)
xwd, column_range, orders = fix_parameters(xwd, column_range, orders, nrow,
                                           ncol, nord)

orig, _ = combine_flat(
    files["wavecal_master"],
    instrument,
    mode,
    extension,
    mask=mask,
    bias=bias,
    bhead=bhead,
)

ref = make_reference_spectrum(linelist, nrow, ncol, nord)

plot_comparison(orig, orders, ref, None, xwd, column_range)