예제 #1
0
    def test_resample_bilinear(self):
        """Test whole bilinear resampling."""
        from pyresample.bilinear import resample_bilinear

        # Single array
        res = resample_bilinear(self.data1,
                                self.swath_def,
                                self.target_def,
                                50e5,
                                neighbours=32,
                                nprocs=1)
        self.assertEqual(res.shape, self.target_def.shape)
        # There are 12 pixels with value 1, all others are zero
        self.assertEqual(res.sum(), 12)
        self.assertEqual((res == 0).sum(), 4)

        # Single array with masked output
        res = resample_bilinear(self.data1,
                                self.swath_def,
                                self.target_def,
                                50e5,
                                neighbours=32,
                                nprocs=1,
                                fill_value=None)
        self.assertTrue(hasattr(res, 'mask'))
        # There should be 12 valid pixels
        self.assertEqual(self.target_def.size - res.mask.sum(), 12)

        # Two stacked arrays
        data = np.dstack((self.data1, self.data2))
        res = resample_bilinear(data, self.swath_def, self.target_def)
        shp = res.shape
        self.assertEqual(shp[0:2], self.target_def.shape)
        self.assertEqual(shp[-1], 2)
예제 #2
0
    def test_resample_bilinear(self):
        # Single array
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def,
                                    50e5, neighbours=32,
                                    nprocs=1)
        self.assertEqual(res.shape, self.target_def.shape)
        # There are 12 pixels with value 1, all others are zero
        self.assertEqual(res.sum(), 12)
        self.assertEqual((res == 0).sum(), 4)

        # Single array with masked output
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def,
                                    50e5, neighbours=32,
                                    nprocs=1, fill_value=None)
        self.assertTrue(hasattr(res, 'mask'))
        # There should be 12 valid pixels
        self.assertEqual(self.target_def.size - res.mask.sum(), 12)

        # Two stacked arrays
        data = np.dstack((self.data1, self.data2))
        res = bil.resample_bilinear(data,
                                    self.swath_def,
                                    self.target_def)
        shp = res.shape
        self.assertEqual(shp[0:2], self.target_def.shape)
        self.assertEqual(shp[-1], 2)
예제 #3
0
    def test_resample_bilinear(self):
        # Single array
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def)
        self.assertEqual(res.size, self.target_def.size)
        # There should be only one pixel with value 1, all others are 0
        self.assertEqual(res.sum(), 1)

        # Single array with masked output
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def, fill_value=None)
        self.assertTrue(hasattr(res, 'mask'))
        # There should be only one valid pixel
        self.assertEqual(self.target_def.size - res.mask.sum(), 1)

        # Two stacked arrays
        data = np.dstack((self.data1, self.data2))
        res = bil.resample_bilinear(data,
                                    self.swath_def,
                                    self.target_def)
        shp = res.shape
        self.assertEqual(shp[0], self.target_def.size)
        self.assertEqual(shp[1], 2)
예제 #4
0
파일: image.py 프로젝트: howff/pyresample
    def resample(self, target_geo_def):
        """Resamples image to area definition using bilinear approach

        Parameters
        ----------
        target_geo_def : object
            Target geometry definition

        Returns
        -------
        image_container : object
            ImageContainerBilinear object of resampled geometry
        """

        if self.image_data.ndim > 2 and self.ndim > 1:
            image_data = self.image_data.reshape(
                self.image_data.shape[0] * self.image_data.shape[1],
                self.image_data.shape[2])
        else:
            image_data = self.image_data.ravel()

        try:
            mask = image_data.mask.copy()
            image_data = image_data.data.copy()
            image_data[mask] = np.nan
        except AttributeError:
            pass

        resampled_image = \
            bilinear.resample_bilinear(image_data,
                                       self.geo_def,
                                       target_geo_def,
                                       radius=self.radius_of_influence,
                                       neighbours=self.neighbours,
                                       epsilon=self.epsilon,
                                       fill_value=self.fill_value,
                                       nprocs=self.nprocs,
                                       reduce_data=self.reduce_data,
                                       segments=self.segments)
        try:
            resampled_image = resampled_image.reshape(target_geo_def.shape)
        except ValueError:
            # The input data was 3D
            shp = target_geo_def.shape
            new_shp = [shp[0], shp[1], image_data.shape[-1]]
            resampled_image = resampled_image.reshape(new_shp)

        return ImageContainerBilinear(resampled_image,
                                      target_geo_def,
                                      self.radius_of_influence,
                                      epsilon=self.epsilon,
                                      fill_value=self.fill_value,
                                      reduce_data=self.reduce_data,
                                      nprocs=self.nprocs,
                                      segments=self.segments)
예제 #5
0
파일: image.py 프로젝트: pytroll/pyresample
    def resample(self, target_geo_def):
        """Resamples image to area definition using bilinear approach

        Parameters
        ----------
        target_geo_def : object
            Target geometry definition

        Returns
        -------
        image_container : object
            ImageContainerBilinear object of resampled geometry
        """

        if self.image_data.ndim > 2 and self.ndim > 1:
            image_data = self.image_data.reshape(self.image_data.shape[0] *
                                                 self.image_data.shape[1],
                                                 self.image_data.shape[2])
        else:
            image_data = self.image_data.ravel()

        try:
            mask = image_data.mask.copy()
            image_data = image_data.data.copy()
            image_data[mask] = np.nan
        except AttributeError:
            pass

        resampled_image = \
            bilinear.resample_bilinear(image_data,
                                       self.geo_def,
                                       target_geo_def,
                                       radius=self.radius_of_influence,
                                       neighbours=self.neighbours,
                                       epsilon=self.epsilon,
                                       fill_value=self.fill_value,
                                       nprocs=self.nprocs,
                                       reduce_data=self.reduce_data,
                                       segments=self.segments)
        try:
            resampled_image = resampled_image.reshape(target_geo_def.shape)
        except ValueError:
            # The input data was 3D
            shp = target_geo_def.shape
            new_shp = [shp[0], shp[1], image_data.shape[-1]]
            resampled_image = resampled_image.reshape(new_shp)

        return ImageContainerBilinear(resampled_image, target_geo_def,
                                      self.radius_of_influence,
                                      epsilon=self.epsilon,
                                      fill_value=self.fill_value,
                                      reduce_data=self.reduce_data,
                                      nprocs=self.nprocs,
                                      segments=self.segments)
예제 #6
0
    def resample(self, target_geo_def):
        """Resamples image to area definition using bilinear approach.

        Parameters
        ----------
        target_geo_def : object
            Target geometry definition

        Returns
        -------
        image_container : object
            ImageContainerBilinear object of resampled geometry
        """
        # import here, instead of the top of the script, to avoid xarray/zarr warning msg
        # while import the top level pyresample module
        from pyresample import bilinear

        image_data = self.image_data

        try:
            mask = image_data.mask.copy()
            image_data = image_data.data.copy()
            image_data[mask] = np.nan
        except AttributeError:
            pass

        resampled_image = \
            bilinear.resample_bilinear(image_data,
                                       self.geo_def,
                                       target_geo_def,
                                       radius=self.radius_of_influence,
                                       neighbours=self.neighbours,
                                       epsilon=self.epsilon,
                                       fill_value=self.fill_value,
                                       nprocs=self.nprocs,
                                       reduce_data=self.reduce_data,
                                       segments=self.segments)

        return ImageContainerBilinear(resampled_image,
                                      target_geo_def,
                                      self.radius_of_influence,
                                      epsilon=self.epsilon,
                                      fill_value=self.fill_value,
                                      reduce_data=self.reduce_data,
                                      nprocs=self.nprocs,
                                      segments=self.segments)
예제 #7
0
    def resample(self, target_geo_def):
        """Resamples image to area definition using bilinear approach

        Parameters
        ----------
        target_geo_def : object
            Target geometry definition

        Returns
        -------
        image_container : object
            ImageContainerBilinear object of resampled geometry
        """
        image_data = self.image_data

        try:
            mask = image_data.mask.copy()
            image_data = image_data.data.copy()
            image_data[mask] = np.nan
        except AttributeError:
            pass

        resampled_image = \
            bilinear.resample_bilinear(image_data,
                                       self.geo_def,
                                       target_geo_def,
                                       radius=self.radius_of_influence,
                                       neighbours=self.neighbours,
                                       epsilon=self.epsilon,
                                       fill_value=self.fill_value,
                                       nprocs=self.nprocs,
                                       reduce_data=self.reduce_data,
                                       segments=self.segments)

        return ImageContainerBilinear(resampled_image, target_geo_def,
                                      self.radius_of_influence,
                                      epsilon=self.epsilon,
                                      fill_value=self.fill_value,
                                      reduce_data=self.reduce_data,
                                      nprocs=self.nprocs,
                                      segments=self.segments)
예제 #8
0
    def resample_WRF(self, st, et, delta):
        '''
        Create Times variable and resample emission species DataArray.
        '''
        # generate date every hour
        datetime_list = list(self.perdelta(st, et, timedelta(hours=1)))
        t_format = '%Y-%m-%d_%H:%M:%S'
        # convert datetime to date string
        Times = []
        for timstep in datetime_list:
            times_str = strftime(t_format, timstep.timetuple())
            Times.append(times_str)
        # the method of creating "Times" with unlimited dimension
        # ref: htttps://github.com/pydata/xarray/issues/3407
        Times = xr.DataArray(np.array(Times,
                                      dtype=np.dtype(('S', 19))
                                      ),
                             dims=['Time'])
        self.chemi = xr.Dataset({'Times': Times})

        # resample
        orig_def = SwathDefinition(lons=self.emi['longitude'],
                                   lats=self.emi['latitude'])
        for vname in self.emi.data_vars:
            if 'E_' in vname:
                logging.info(f'Resample {vname} ...')
                resampled_list = []
                for t in range(self.emi[vname].shape[0]):
                    # different resample methods
                    # see: http://earthpy.org/interpolation_between_grids_with_pyresample.html
                    if resample_method == 'nearest':
                        resampled_list.append(resample_nearest(
                                              orig_def,
                                              self.emi[vname][t, :, :].values,
                                              self.area_def,
                                              radius_of_influence=self.radius_of_influence,
                                              fill_value=0.)
                                              )
                    elif resample_method == 'idw':
                        resampled_list.append(resample_custom(
                                              orig_def,
                                              self.emi[vname][t, :, :].values,
                                              self.area_def,
                                              radius_of_influence=self.radius_of_influence,
                                              neighbours=10,
                                              weight_funcs=lambda r: 1/r**2,
                                              fill_value=0.)
                                              )
                    elif resample_method == 'bilinear':
                        resampled_list.append(resample_bilinear(
                                              self.emi[vname][t, :, :].values,
                                              orig_def,
                                              self.area_def,
                                              radius=self.radius_of_influence,
                                              neighbours=10,
                                              nprocs=4,
                                              reduce_data=True,
                                              segments=None,
                                              fill_value=0.,
                                              epsilon=0)
                                              )
                # combine 2d array list to one 3d
                # ref: https://stackoverflow.com/questions/4341359/
                #       convert-a-list-of-2d-numpy-arrays-to-one-3d-numpy-array
                # we also need to flip the 3d array,
                #    because of the "strange" order of 1d array in MEIC nc file
                #    then add another dimension for zdim.
                resampled_data = np.flip(np.rollaxis(np.dstack(resampled_list), -1), 1)[:, np.newaxis, ...]
                # assign to self.chemi with dims
                self.chemi[vname] = xr.DataArray(resampled_data,
                                                 dims=['Time',
                                                       'emissions_zdim',
                                                       'south_north',
                                                       'west_east'
                                                       ]
                                                 )

                # add attrs needed by WRF-Chem
                v_attrs = {'FieldType': 104,
                           'MemoryOrder': 'XYZ',
                           'description': vname,
                           'stagger': '',
                           'coordinates': 'XLONG XLAT',
                           'units': self.emi[vname].attrs['units']
                           }

                self.chemi[vname] = self.chemi[vname].assign_attrs(v_attrs)

                logging.debug(' '*8 +
                              ' min: ' + str(self.chemi[vname].min().values) +
                              ' max: ' + str(self.chemi[vname].max().values) +
                              ' mean ' + str(self.chemi[vname].mean().values)
                              )
예제 #9
0
def atms(
    infile,
    gridding_radius=25000,
):
    ds = xr.open_dataset(infile)

    outEpsg = 3857
    nd = -999

    outProj = Proj(init='epsg:{0}'.format(outEpsg))
    inProj = Proj(init='epsg:4326')

    lons, lats = ds.lon.values, ds.lat.values

    xx, yy = transform(inProj, outProj, lons, lats)
    minx, miny = transform(inProj, outProj, -180, -86)
    maxx, maxy = transform(inProj, outProj, 180, 86)
    res = 16000

    eastings = np.arange(round(minx), round(maxx), res)
    northings = np.arange(round(miny), round(maxy), res)

    ee = eastings[np.where((eastings > xx.min()) & (eastings < xx.max()))]
    nn = northings[np.where((northings > yy.min()) & (northings < yy.max()))]

    swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
    area_def = geometry.AreaDefinition(
        'mercator', 'WGS 84 / Pseudo-Mercator - Projected', 'mercator', {
            'x_0': '0.0',
            'y_0': '0.0',
            'lat_ts': '0.00',
            'lon_0': '0.00',
            'proj': 'merc',
            'k': '1.0',
            'datum': 'WGS84',
            'ellps': 'WGS84',
            'a': '6378137',
            'b': '6378137'
        }, ee.size, nn.size,
        [ee.min(), nn.min(), ee.max(), nn.max()])

    data = None

    # TODO: dynamically estimate sigama based on beam footprints
    eps = 0.1

    result = bilinear.resample_bilinear(
        ds.land_frac.where(ds['sat_zen'] < 50).values,
        swath_def,
        area_def,
        radius=gridding_radius,
        neighbours=32,
        nprocs=1,
        fill_value=nd,
        reduce_data=True,
        segments=None,
        epsilon=eps)

    result[np.where(
        result >= 0)] = np.abs(result[np.where(result >= 0)] - 1) * 10000

    name, _ = os.path.splitext(infile)
    outName = name + '_waterfrac.TIF'

    gt = (ee.min(), res, 0, nn.max(), 0, -res)

    writeGeotiff(outName, result, gt, outEpsg, noData=nd)

    return outName
예제 #10
0
def atms(
    infile,
    gridding_radius=25000,
):
    ds = xr.open_dataset(infile)

    outEpsg = 3857
    nd = -999

    outProj = Proj(init="epsg:{0}".format(outEpsg))
    inProj = Proj(init="epsg:4326")

    lons, lats = ds.lon.values, ds.lat.values

    xx, yy = transform(inProj, outProj, lons, lats)
    minx, miny = transform(inProj, outProj, -180, -86)
    maxx, maxy = transform(inProj, outProj, 180, 86)
    res = 16000

    eastings = np.arange(round(minx), round(maxx), res)
    northings = np.arange(round(miny), round(maxy), res)

    ee = eastings[np.where((eastings > xx.min()) & (eastings < xx.max()))]
    nn = northings[np.where((northings > yy.min()) & (northings < yy.max()))]

    swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
    area_def = geometry.AreaDefinition(
        "mercator",
        "WGS 84 / Pseudo-Mercator - Projected",
        "mercator",
        {
            "x_0": "0.0",
            "y_0": "0.0",
            "lat_ts": "0.00",
            "lon_0": "0.00",
            "proj": "merc",
            "k": "1.0",
            "datum": "WGS84",
            "ellps": "WGS84",
            "a": "6378137",
            "b": "6378137",
        },
        ee.size,
        nn.size,
        [ee.min(), nn.min(), ee.max(), nn.max()],
    )

    data = None

    # TODO: dynamically estimate sigama based on beam footprints
    eps = 0.1

    result = bilinear.resample_bilinear(
        ds.land_frac.where(ds["sat_zen"] < 50).values,
        swath_def,
        area_def,
        radius=gridding_radius,
        neighbours=32,
        nprocs=1,
        fill_value=nd,
        reduce_data=True,
        segments=None,
        epsilon=eps,
    )

    result[np.where(
        result >= 0)] = np.abs(result[np.where(result >= 0)] - 1) * 10000

    name, _ = os.path.splitext(infile)
    out_name = name + "_waterfrac.TIF"

    gt = (ee.min(), res, 0, nn.max(), 0, -res)

    write_geotiff(out_name, result, gt, outEpsg, no_data=nd)

    return out_name