def main(): start = time.time() # init args args = parse_args() assert args.config_file is not None, 'a config file must be provided!' # init and load retrieval pipeline settings cfg = get_defaults_cfg() cfg = setup_cfg(cfg, args.config_file, args.opts) # load features query_fea, query_info, _ = feature_loader.load(cfg.index.query_fea_dir, cfg.index.feature_names) gallery_fea, gallery_info, _ = feature_loader.load( cfg.index.gallery_fea_dir, cfg.index.feature_names) print("using init_load time: {:6f}s".format(time.time() - start)) # build helper and index features index_helper = build_index_helper(cfg.index) index_result_info, query_fea, gallery_fea = index_helper.do_index( query_fea, query_info, gallery_fea) # # build helper and evaluate results # evaluate_helper = build_evaluate_helper(cfg.evaluate) # mAP, recall_at_k = evaluate_helper.do_eval(index_result_info, gallery_info) # # show results # evaluate_helper.show_results(mAP, recall_at_k) save_result(args.save_file, index_result_info, query_info, gallery_info) save_result_n(r"./result_tmp/submission_30.csv", index_result_info, query_info, gallery_info) print("using total time: {:6f}s".format(time.time() - start))
def main(): # init args args = parse_args() assert args.config_file is not None, 'a config file must be provided!' # init and load retrieval pipeline settings cfg = get_defaults_cfg() cfg = setup_cfg(cfg, args.config_file, args.opts) # load features query_fea, query_info, _ = feature_loader.load(cfg.index.query_fea_dir, cfg.index.feature_names) gallery_fea, gallery_info, _ = feature_loader.load( cfg.index.gallery_fea_dir, cfg.index.feature_names) # build helper and index features index_helper = build_index_helper(cfg.index) index_result_info, query_fea, gallery_fea = index_helper.do_index( query_fea, query_info, gallery_fea) # build helper and evaluate results evaluate_helper = build_evaluate_helper(cfg.evaluate) mAP, recall_at_k = evaluate_helper.do_eval(index_result_info, gallery_info) # show results evaluate_helper.show_results(mAP, recall_at_k)
def main(): # init args args = parse_args() assert args.config_file is not "", 'a config file must be provided!' assert os.path.exists(args.config_file), 'the config file must be existed!' # init and load retrieval pipeline settings cfg = get_defaults_cfg() cfg = setup_cfg(cfg, args.config_file, args.opts) # set path for single image path = '/data/caltech101/query/airplanes/image_0004.jpg' # build transformers transformers = build_transformers(cfg.datasets.transformers) # build model model = build_model(cfg.model) # read image and convert it to tensor img = Image.open(path).convert("RGB") img_tensor = transformers(img) # build helper and extract feature for single image extract_helper = build_extract_helper(model, cfg.extract) img_fea_info = extract_helper.do_single_extract(img_tensor) stacked_feature = list() for name in cfg.index.feature_names: assert name in img_fea_info[ 0], "invalid feature name: {} not in {}!".format( name, img_fea_info[0].keys()) stacked_feature.append(img_fea_info[0][name].cpu()) img_fea = np.concatenate(stacked_feature, axis=1) # load gallery features gallery_fea, gallery_info, _ = feature_loader.load( cfg.index.gallery_fea_dir, cfg.index.feature_names) # build helper and single index feature index_helper = build_index_helper(cfg.index) index_result_info, query_fea, gallery_fea = index_helper.do_index( img_fea, img_fea_info, gallery_fea) index_helper.save_topk_retrieved_images('retrieved_images/', index_result_info[0], 5, gallery_info) print('single index have done!')
def main(): # init args args = parse_args() assert args.data_json is not None, 'the dataset json must be provided!' assert args.save_path is not None, 'the save path must be provided!' assert args.config_file is not None, 'a config file must be provided!' # init and load retrieval pipeline settings cfg = get_defaults_cfg() cfg = setup_cfg(cfg, args.config_file, args.opts) # build dataset and dataloader dataset = build_folder(args.data_json, cfg.datasets) dataloader = build_loader(dataset, cfg.datasets) # build model model = build_model(cfg.model) # build helper and extract features extract_helper = build_extract_helper(model, cfg.extract) extract_helper.do_extract(dataloader, args.save_path, args.save_interval)