def watcher(): global graph_msg, graph_min, graph_max rh = Robinhood() rh.login(username=rh_user, password=rh_pass, qr_code=rh_qr) raw_result = rh.positions() result = raw_result['results'] shares_total = [] port_msg = f"Your portfolio ({rh.get_account()['account_number']}):\n" loss_output = 'Loss:' profit_output = 'Profit:' loss_total = [] profit_total = [] graph_msg = None # initiates a variable graph_msg as None for looped condition below n = 0 n_ = 0 for data in result: share_id = str(data['instrument'].split('/')[-2]) buy = round(float(data['average_buy_price']), 2) shares_count = int(data['quantity'].split('.')[0]) if shares_count != 0: n = n + 1 n_ = n_ + shares_count else: continue raw_details = rh.get_quote(share_id) share_name = raw_details['symbol'] call = raw_details['instrument'] share_full_name = loads(get(call).text)['simple_name'] total = round(shares_count * float(buy), 2) shares_total.append(total) current = round(float(raw_details['last_trade_price']), 2) current_total = round(shares_count * current, 2) difference = round(float(current_total - total), 2) if difference < 0: loss_output += ( f'\n{share_full_name}:\n{shares_count} shares of {share_name} at ${buy} Currently: ${current}\n' f'Total bought: ${total} Current Total: ${current_total}' f'\nLOST ${-difference}\n') loss_total.append(-difference) else: profit_output += ( f'\n{share_full_name}:\n{shares_count} shares of {share_name} at ${buy} Currently: ${current}\n' f'Total bought: ${total} Current Total: ${current_total}' f'\nGained ${difference}\n') profit_total.append(difference) if graph_min and graph_max: graph_min = float(graph_min) graph_max = float(graph_max) if difference > graph_max or difference < -graph_min: time_now = datetime.now() metrics = time_now - timedelta(days=7) numbers = [] historic_data = (rh.get_historical_quotes( share_name, '10minute', 'week')) historical_values = historic_data['results'][0]['historicals'] for close_price in historical_values: numbers.append(round(float(close_price['close_price']), 2)) fig, ax = plt.subplots() if difference > graph_max: plt.title( f"Stock Price Trend for {share_full_name}\nShares: {shares_count} Profit: ${difference}" ) elif difference < graph_min: plt.title( f"Stock Price Trend for {share_full_name}\nShares: {shares_count} LOSS: ${-difference}" ) plt.xlabel( f"1 Week trend with 10 minutes interval from {metrics.strftime('%m-%d %H:%M')} to " f"{time_now.strftime('%m-%d %H:%M')}") plt.ylabel('Price in USD') ax.plot(numbers, linewidth=1.5) if not path.isdir('img'): mkdir('img') fig.savefig(f"img/{share_full_name}.png", format="png") plt.close( ) # close plt to avoid memory exception when more than 20 graphs are generated # stores graph_msg only if a graph is generated else graph_msg remains None if not graph_msg: # used if not to avoid storing the message repeatedly graph_msg = f"Attached are the graphs for stocks which exceeded a profit of " \ f"${graph_max} or deceeded a loss of ${graph_min}" elif not graph_msg: # used elif not to avoid storing the message repeatedly graph_msg = "Add the env variables for <graph_min> and <graph_max> to include a graph of previous " \ "week's trend." lost = round(fsum(loss_total), 2) gained = round(fsum(profit_total), 2) port_msg += f'The below values will differ from overall profit/loss if shares were purchased ' \ f'with different price values.\nTotal Profit: ${gained}\nTotal Loss: ${lost}\n' net_worth = round(float(rh.equity()), 2) output = f'Total number of stocks purchased: {n}\n' output += f'Total number of shares owned: {n_}\n\n' output += f'Current value of your total investment is: ${net_worth}\n' total_buy = round(fsum(shares_total), 2) output += f'Value of your total investment while purchase is: ${total_buy}\n' total_diff = round(float(net_worth - total_buy), 2) if total_diff < 0: output += f'Overall Loss: ${total_diff}' else: output += f'Overall Profit: ${total_diff}' yesterday_close = round(float(rh.equity_previous_close()), 2) two_day_diff = round(float(net_worth - yesterday_close), 2) output += f"\n\nYesterday's closing value: ${yesterday_close}" if two_day_diff < 0: output += f"\nCurrent Dip: ${two_day_diff}" else: output += f"\nCurrent Spike: ${two_day_diff}" if not graph_msg: # if graph_msg was not set above graph_msg = f"You have not lost more than ${graph_min} or gained more than " \ f"${graph_max} to generate a graph." return port_msg, profit_output, loss_output, output, graph_msg
class PyrhAdapter(QSM): def __init__(self, name: str = 'pyrh_adapter'): super().__init__(name, ['pyrh_request', 'trade']) self.rbn = Robinhood() self.logged_in = False self.client_req = Queue() self.requests = Queue() self.request_lock = Lock() def setup_states(self): super().setup_states() self.mappings['login'] = self.login self.mappings['quote'] = self.quote self.mappings['buy'] = self.buy self.mappings['sell'] = self.sell def idle_state(self): try: req = self.client_req.get_nowait() self.append_state('pyrh_request', req) except Empty as _: pass super().idle_state() def trade_msg(self, msg: Message): transaction = msg.payload self.handler.send( Message('pyrh_request', 'buy' if transaction.buy else 'sell', transaction)) def pyrh_request_msg(self, msg: Message): if msg.msg == 'logout': if self.logged_in: self.rbn.logout() print("Logged out") self.logged_in = False if msg.msg == 'quote': if not self.logged_in: self.append_state('login') self.append_state('quote', msg.payload) elif msg.msg == 'buy': if not self.logged_in: self.append_state('login') self.append_state('buy', msg.payload) elif msg.msg == 'sell': if not self.logged_in: self.append_state('login') self.append_state('sell', msg.payload) def login(self): while True: user = input('Username(email): ') pwd = input('Password: '******'Logged in successfully') self.logged_in = True break print('Something went wrong, try again?') continue def quote(self, acronym: str): while True: try: self.requests.put(self.rbn.get_quote(acronym)) break except Full as _: print('requests queue is full, skipping...') break except Exception as _: print('Something went wrong, trying again') time.sleep(5) def buy(self, descriptor: ManagedStock): # self.rbn.place_buy_order(self.rbn.get_quote(descriptor.acronym)['instrument'], descriptor.shares) print("Buying {}".format(descriptor)) def sell(self, descriptor: ManagedStock): # self.rbn.place_sell_order(self.rbn.get_quote(descriptor.acronym)['instrument'], descriptor.shares) print("Selling {}".format(descriptor)) def get_quote(self, acronym: str) -> dict: self.request_lock.acquire() self.client_req.put(Message('pyrh_request', 'quote', acronym)) d = self.requests.get() self.request_lock.release() return d def place_buy(self, s: ManagedStock): self.client_req.put(Message('pyrh_request', 'buy', s)) def place_sell(self, s: ManagedStock): self.client_req.put(Message('pyrh_request', 'sell', s))