def test_FGDA_transform(): """Test transform of FGDA""" covset = generate_cov(10,3) labels = np.array([0,1]).repeat(5) ts = FGDA(metric='riemann') ts.fit(covset,labels) ts.transform(covset)
def test_FGDA_transform(): """Test transform of FGDA.""" covset = generate_cov(10, 3) labels = np.array([0, 1]).repeat(5) ts = FGDA(metric='riemann') ts.fit(covset, labels) ts.transform(covset)
def test_FGDA_init(tsupdate, metric, get_covmats, get_labels): n_classes, n_trials, n_channels = 2, 6, 3 labels = get_labels(n_trials, n_classes) covmats = get_covmats(n_trials, n_channels) ts = FGDA(metric=metric, tsupdate=tsupdate) ts.fit(covmats, labels) Xtr = ts.transform(covmats) assert Xtr.shape == (n_trials, n_channels, n_channels)
def learn_ts_fgda(X_train, y_train, T=0, NT=1): classes = [T, NT] train_fgda = FGDA() train_fgda.fit(X=X_train, y=y_train) X_train_fgda = train_fgda.transform(X=X_train) centroids_train_fgda = [ mean_covariance(X_train_fgda[y_train == l, :, :], metric='riemann') for l in classes ] return X_train_fgda, centroids_train_fgda, train_fgda
def test_FGDA_fit(): """Test Fit of FGDA.""" covset = generate_cov(10, 3) labels = np.array([0, 1]).repeat(5) ts = FGDA(metric='riemann') ts.fit(covset, labels)