예제 #1
0
    def step(self, state, t, i):
        obs = lambda value: full((state._num_particles, ), value)

        n = state[f"s{t-1}"] + state[f"i{t-1}"] + state[f"r{t-1}"]
        τ = sample(
            f"τ{t}",
            Binomial(state[f"s{t-1}"],
                     1.0 - exp(-state["λ"] * state[f"i{t-1}"] / n)))
        Δi = sample(f"Δi{t}", Binomial(τ, state["δ"]))
        Δr = sample(f"Δr{t}", Binomial(state[f"i{t-1}"], state["γ"]))
        state[f"s{t}"] = sample(f"s{t}", Delta(state[f"s{t-1}"] - Δi))
        state[f"i{t}"] = sample(f"i{t}",
                                Delta(state[f"i{t-1}"] + Δi - Δr),
                                obs=obs(i))
        state[f"r{t}"] = sample(f"r{t}", Delta(state[f"r{t-1}"] + Δr))
예제 #2
0
def log_reg(x_data=None, y_data=None):
    w = pyro.sample("w", Normal(torch.zeros(d), torch.ones(d)))
    w0 = pyro.sample("w0", Normal(0., 1.))

    with pyro.plate("map", N):
        x = pyro.sample("x", Normal(torch.zeros(d), 2).to_event(1), obs=x_data)
        logits = (w0 + x @ torch.FloatTensor(w)).squeeze(-1)
        y = pyro.sample("pred", Binomial(logits=logits), obs=y_data)

    return x, y
예제 #3
0
def fully_pooled(at_bats):
    """
    Number of hits in $K$ at bats for each player has a Binomial
    distribution with a common probability of success, $\phi$.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :return: Number of hits predicted by the model.
    """
    phi_prior = Uniform(at_bats.new_tensor(0), at_bats.new_tensor(1))
    phi = pyro.sample("phi", phi_prior)
    return pyro.sample("obs", Binomial(at_bats, phi))
예제 #4
0
def not_pooled(at_bats):
    """
    Number of hits in $K$ at bats for each player has a Binomial
    distribution with independent probability of success, $\phi_i$.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :return: Number of hits predicted by the model.
    """
    num_players = at_bats.shape[0]
    phi_prior = Uniform(at_bats.new_tensor(0), at_bats.new_tensor(1)).expand_by([num_players]).independent(1)
    phi = pyro.sample("phi", phi_prior)
    return pyro.sample("obs", Binomial(at_bats, phi))
예제 #5
0
파일: baseball.py 프로젝트: youqad/pyro
def not_pooled(at_bats, hits):
    r"""
    Number of hits in $K$ at bats for each player has a Binomial
    distribution with independent probability of success, $\phi_i$.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :param (torch.Tensor) hits: Number of hits for the given at bats.
    :return: Number of hits predicted by the model.
    """
    num_players = at_bats.shape[0]
    with pyro.plate("num_players", num_players):
        phi_prior = Uniform(scalar_like(at_bats, 0), scalar_like(at_bats, 1))
        phi = pyro.sample("phi", phi_prior)
        return pyro.sample("obs", Binomial(at_bats, phi), obs=hits)
예제 #6
0
def partially_pooled(at_bats):
    """
    Number of hits has a Binomial distribution with a logit link function.
    The logits $\alpha$ for each player is normally distributed with the
    mean and scale parameters sharing a common prior.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :return: Number of hits predicted by the model.
    """
    num_players = at_bats.shape[0]
    loc = pyro.sample("loc", Normal(at_bats.new_tensor(-1), at_bats.new_tensor(1)))
    scale = pyro.sample("scale", HalfCauchy(at_bats.new_tensor(0), at_bats.new_tensor(1)))
    alpha = pyro.sample("alpha", Normal(loc, scale).expand_by([num_players]).independent(1))
    return pyro.sample("obs", Binomial(at_bats, logits=alpha))
예제 #7
0
def model(data):
    # whether new topic or not; prior=0.5; random choice whether old/new
    with pyro.plate("new_topic_plate", T):
        new_topic = pyro.sample("new_topic", Binomial(probs=0.5))

    # if new topic, if linked to old topic, prior=0.5
    with pyro.plate("linked_plate", T):
        linked = pyro.sample("linked", Binomial(probs=0.5))

    # if old topic, which old topic
    with pyro.plate("old_topic_plate", T):
        which_old_topic = pyro.sample("which_old_topic",
                                      Multinomial(probs=prev_topic_freq))

    # beta sampling for topic weights
    with pyro.plate("beta_plate", T - 1):
        beta = pyro.sample("beta", Beta(1, alpha))

    with pyro.plate("theta_plate", T):  # shape [T,C]
        # Dirichlet distribution (conjugate prior of Mult); symmetric prior
        theta = pyro.sample("theta", Dirichlet(torch.ones(C) / C))

    with pyro.plate("gamma_plate", T_prev):
        gamma = pyro.sample("gamma", Dirichlet(prev_taus))

    with pyro.plate("data", N):
        z = pyro.sample("z", Categorical(probs=mix_weights(beta)))
        old = get_old_topics(which_old_topic)
        a = (new_topic) * (linked)
        b = (1 - new_topic)
        c = (new_topic) * (1 - linked)
        a = a[z].reshape(N, 1)
        b = b[z].reshape(N, 1)
        c = c[z].reshape(N, 1)
        mult_probs = a * gamma[old[z]] + b * prev_theta[old[z]] + c * theta[z]
        pyro.sample("obs", Multinomial(probs=mult_probs), obs=data)
예제 #8
0
def model(n_ice, n_obs, floe_size, cover_subp):
    a_floe = pyro.sample("a_floe", dist.Normal(1., 1.))
    b_floe = pyro.sample("b_floe", dist.Normal(0., 1.))
    a_cover = pyro.sample("a_cover", dist.Normal(1., 1.))
    b_cover = pyro.sample("b_cover", dist.Normal(0., 1.))
    a_cover_b = pyro.sample("a_cover_b", dist.Normal(1., 1.))
    b_cover_b = pyro.sample("b_cover_b", dist.Normal(0., 1.))
    lambda_ice = sigmoid((a_floe * floe_size + b_floe))
    alpha_det = sigmoid((a_cover * cover_subp + b_cover))
    beta_det = sigmoid((a_cover_b * cover_subp + b_cover_b))
    with pyro.plate('subp', size=len(floe_size)):
        N_ice = pyro.sample('N_ice', Poisson(lambda_ice), obs=n_ice)
        phi_det = pyro.sample('phi_det', Beta(alpha_det,
                                              beta_det)) * (N_ice > 0).float()
        N_obs = pyro.sample('N_obs', Binomial(N_ice, phi_det), obs=n_obs)
예제 #9
0
파일: baseball.py 프로젝트: youqad/pyro
def partially_pooled_with_logit(at_bats, hits):
    r"""
    Number of hits has a Binomial distribution with a logit link function.
    The logits $\alpha$ for each player is normally distributed with the
    mean and scale parameters sharing a common prior.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :param (torch.Tensor) hits: Number of hits for the given at bats.
    :return: Number of hits predicted by the model.
    """
    num_players = at_bats.shape[0]
    loc = pyro.sample("loc", Normal(scalar_like(at_bats, -1), scalar_like(at_bats, 1)))
    scale = pyro.sample("scale", HalfCauchy(scale=scalar_like(at_bats, 1)))
    with pyro.plate("num_players", num_players):
        alpha = pyro.sample("alpha", Normal(loc, scale))
        return pyro.sample("obs", Binomial(at_bats, logits=alpha), obs=hits)
예제 #10
0
파일: baseball.py 프로젝트: youqad/pyro
def partially_pooled(at_bats, hits):
    r"""
    Number of hits has a Binomial distribution with independent
    probability of success, $\phi_i$. Each $\phi_i$ follows a Beta
    distribution with concentration parameters $c_1$ and $c_2$, where
    $c_1 = m * kappa$, $c_2 = (1 - m) * kappa$, $m ~ Uniform(0, 1)$,
    and $kappa ~ Pareto(1, 1.5)$.

    :param (torch.Tensor) at_bats: Number of at bats for each player.
    :param (torch.Tensor) hits: Number of hits for the given at bats.
    :return: Number of hits predicted by the model.
    """
    num_players = at_bats.shape[0]
    m = pyro.sample("m", Uniform(scalar_like(at_bats, 0), scalar_like(at_bats, 1)))
    kappa = pyro.sample("kappa", Pareto(scalar_like(at_bats, 1), scalar_like(at_bats, 1.5)))
    with pyro.plate("num_players", num_players):
        phi_prior = Beta(m * kappa, (1 - m) * kappa)
        phi = pyro.sample("phi", phi_prior)
        return pyro.sample("obs", Binomial(at_bats, phi), obs=hits)
예제 #11
0
def guide(data):
    # pyro params
    new_topic_prob = pyro.param("new_topic_prob",
                                lambda: Uniform(0, 1).sample([T]),
                                constraint=constraints.unit_interval)

    linked_prob = pyro.param("linked_prob",
                             lambda: Uniform(0, 1).sample([T]),
                             constraint=constraints.unit_interval)

    which_topic_probs = pyro.param("which_topic_probs",
                                   lambda: Uniform(0, 1).sample([T_prev]),
                                   constraint=constraints.simplex)

    kappa = pyro.param('kappa',
                       lambda: Uniform(0, 2).sample([T - 1]),
                       constraint=constraints.positive)

    tau = pyro.param('tau',
                     lambda: MultivariateNormal(0.5 * torch.ones(C), 0.25 *
                                                torch.eye(C)).sample([T]),
                     constraint=constraints.unit_interval)

    # N params for categorical dist; topic weights; symmetric prior
    phi = pyro.param('phi',
                     lambda: Dirichlet(1 / T * torch.ones(T)).sample([N]),
                     constraint=constraints.simplex)

    # model params
    with pyro.plate("new_topic_plate", T):
        # print(new_topic_prob)
        new_topic = pyro.sample("new_topic", Binomial(probs=new_topic_prob))

    # if new topic, if linked to old topic, prior=0.5
    with pyro.plate("linked_plate", T):
        linked = pyro.sample("linked", Binomial(probs=linked_prob))

    # if old topic, which old topic
    with pyro.plate("old_topic_plate", T):
        which_old_topic = pyro.sample("which_old_topic",
                                      Multinomial(probs=which_topic_probs))

    with pyro.plate("beta_plate", T - 1):
        q_beta = 0
        q_beta += pyro.sample("beta", Beta(torch.ones(T - 1), kappa))

    # new topic with symmetric prior
    with pyro.plate("theta_plate", T):
        theta = pyro.sample("theta", Dirichlet(tau))

    # new topic linked to old topic
    with pyro.plate("gamma_plate", T_prev):
        gamma = pyro.sample("gamma", Dirichlet(prev_taus))

    with pyro.plate("data", N):
        z = pyro.sample("z", Categorical(phi))
        old = get_old_topics(which_old_topic)
        a = ((new_topic) * (linked))
        b = (1 - new_topic)
        c = ((new_topic) * (1 - linked))
        a = a[z].reshape(N, 1)
        b = b[z].reshape(N, 1)
        c = c[z].reshape(N, 1)
        mult_probs = 0
        mult_probs += a * gamma[old[z]] + b * prev_theta[old[z]] + c * theta[z]
예제 #12
0
def partial_pooled(Y):
    with pyro.plate(Y.shape[0]):
        θ = Beta(1, 1)
        return pyro.sample("y_obs", Binomial(total_count=1, probs=θ))