def auto_guide(data): probs_a = pyro.param("guide_probs_a") probs_c = pyro.param("guide_probs_c") a = pyro.sample("a", dist.Categorical(probs_a), infer={"enumerate": "parallel"}) with pyro.plate("data", 2, dim=-1): pyro.sample("c", dist.Categorical(probs_c[a]))
def constrained_model(data): locs = pyro.param("locs", torch.randn(3), constraint=constraints.real) scales = pyro.param("scales", ops.exp(torch.randn(3)), constraint=constraints.positive) p = torch.tensor([0.5, 0.3, 0.2]) x = pyro.sample("x", dist.Categorical(p)) pyro.sample("obs", dist.Normal(locs[x], scales[x]), obs=data)
def hand_guide(data): probs_a = pyro.param("guide_probs_a") probs_c = pyro.param("guide_probs_c") a = pyro.sample("a", dist.Categorical(probs_a), infer={"enumerate": "parallel"}) for i in range(2): pyro.sample("c_{}".format(i), dist.Categorical(probs_c[a]))
def guide(): d = dist.Categorical(pyro.param("q")) context1 = pyro.plate("outer", outer_dim, dim=-1) context2 = pyro.plate("inner", inner_dim, dim=-2) pyro.sample("w", d, infer={"enumerate": "parallel"}) with context1: pyro.sample("x", d, infer={"enumerate": "parallel"}) with context2: pyro.sample("y", d, infer={"enumerate": "parallel"}) with context1, context2: pyro.sample("z", d, infer={"enumerate": "parallel"})
def model(): d = dist.Categorical(p) context1 = pyro.plate("outer", outer_dim, dim=-1) context2 = pyro.plate("inner", inner_dim, dim=-2) pyro.sample("w", d) with context1: pyro.sample("x", d) with context2: pyro.sample("y", d) with context1, context2: pyro.sample("z", d)
def model(data): T, N, D = data.shape # time steps, individuals, features # Gaussian initial distribution. init_loc = pyro.param("init_loc", torch.zeros(D)) init_scale = pyro.param("init_scale", 1e-2 * torch.eye(D), constraint=constraints.lower_cholesky) # Linear dynamics with Gaussian noise. trans_const = pyro.param("trans_const", torch.zeros(D)) trans_coeff = pyro.param("trans_coeff", torch.eye(D)) noise = pyro.param("noise", 1e-2 * torch.eye(D), constraint=constraints.lower_cholesky) obs_plate = pyro.plate("channel", D, dim=-1) with pyro.plate("data", N, dim=-2): state = None for t in range(T): # Transition. if t == 0: loc = init_loc scale_tril = init_scale else: loc = trans_const + funsor.torch.torch_tensordot( trans_coeff, state, 1) scale_tril = noise state = pyro.sample("state_{}".format(t), dist.MultivariateNormal(loc, scale_tril), infer={"exact": exact}) # Factorial probit likelihood model. with obs_plate: pyro.sample("obs_{}".format(t), dist.Bernoulli(logits=state["channel"]), obs=data[t])
def auto_model(): probs_a = pyro.param("probs_a") probs_b = pyro.param("probs_b") probs_c = pyro.param("probs_c") probs_d = pyro.param("probs_d") with pyro.plate("a_axis", 2, dim=-1): a = pyro.sample("a", dist.Categorical(probs_a), infer={"enumerate": "parallel"}) pyro.sample("b", dist.Categorical(probs_b[a]), obs=b_data) with pyro.plate("c_axis", 3, dim=-1): c = pyro.sample("c", dist.Categorical(probs_c), infer={"enumerate": "parallel"}) pyro.sample("d", dist.Categorical(probs_d[c]), obs=d_data)
def auto_model(data): probs_a = pyro.param("model_probs_a") probs_b = pyro.param("model_probs_b") probs_c = pyro.param("model_probs_c") probs_d = pyro.param("model_probs_d") probs_e = pyro.param("model_probs_e") a = pyro.sample("a", dist.Categorical(probs_a)) b = pyro.sample("b", dist.Categorical(probs_b[a]), infer={"enumerate": "parallel"}) with pyro.plate("data", 2, dim=-1): c = pyro.sample("c", dist.Categorical(probs_c[a])) d = pyro.sample("d", dist.Categorical(Vindex(probs_d)[b, c]), infer={"enumerate": "parallel"}) pyro.sample("obs", dist.Categorical(probs_e[d]), obs=data)
def hand_model(data): probs_a = pyro.param("model_probs_a") probs_b = pyro.param("model_probs_b") probs_c = pyro.param("model_probs_c") probs_d = pyro.param("model_probs_d") probs_e = pyro.param("model_probs_e") a = pyro.sample("a", dist.Categorical(probs_a)) b = pyro.sample("b", dist.Categorical(probs_b[a]), infer={"enumerate": "parallel"}) for i in range(2): c = pyro.sample("c_{}".format(i), dist.Categorical(probs_c[a])) d = pyro.sample("d_{}".format(i), dist.Categorical(Vindex(probs_d)[b, c]), infer={"enumerate": "parallel"}) pyro.sample("obs_{}".format(i), dist.Categorical(probs_e[d]), obs=data[i])
def hand_model(): probs_a = pyro.param("probs_a") probs_b = pyro.param("probs_b") probs_c = pyro.param("probs_c") probs_d = pyro.param("probs_d") for i in range(2): a = pyro.sample("a_{}".format(i), dist.Categorical(probs_a), infer={"enumerate": "parallel"}) pyro.sample("b_{}".format(i), dist.Categorical(probs_b[a]), obs=b_data[i]) for j in range(3): c = pyro.sample("c_{}".format(j), dist.Categorical(probs_c), infer={"enumerate": "parallel"}) pyro.sample("d_{}".format(j), dist.Categorical(probs_d[c]), obs=d_data[j])
def guide(): with pyro.plate("plate", len(data), dim=-1): p = pyro.param("p", torch.ones(len(data), 3) / 3, event_dim=1) pyro.sample("x", dist.Categorical(p)) return p
def model(): locs = pyro.param("locs", torch.tensor([-1.0, 0.0, 1.0])) with pyro.plate("plate", len(data), dim=-1): x = pyro.sample("x", dist.Categorical(torch.ones(3) / 3)) pyro.sample("obs", dist.Normal(locs[x], 1.0), obs=data)
def guide(): loc = pyro.param("loc", torch.tensor(0.0)) scale = pyro.param("scale", torch.tensor(1.0)) with pyro.plate("plate_outer", data.size(-1), dim=-1): pyro.sample("x", dist.Normal(loc, scale))
def model(): loc = torch.tensor(3.0) with pyro.plate("plate_outer", data.size(-1), dim=-1): x = pyro.sample("x", dist.Normal(loc, 1.0)) with pyro.plate("plate_inner", data.size(-2), dim=-2): pyro.sample("y", dist.Normal(x, 1.0), obs=data)
def guide(): p = pyro.param("p", torch.tensor([0.5, 0.3, 0.2])) with pyro.plate("plate", len(data), dim=-1): pyro.sample("x", dist.Categorical(p))
def model(): locs = pyro.param("locs", torch.tensor([0.2, 0.3, 0.5])) p = torch.tensor([0.2, 0.3, 0.5]) with pyro.plate("plate", len(data), dim=-1): x = pyro.sample("x", dist.Categorical(p)) pyro.sample("obs", dist.Normal(locs[x], 1.0), obs=data)
def model(data): p = pyro.param("p", torch.tensor(0.5)) pyro.sample("x", dist.Bernoulli(p), obs=data)
def model(data): loc = pyro.sample("loc", dist.Normal(0., 1.)) with pyro.plate("data", len(data), dim=-1): pyro.sample("obs", dist.Normal(loc, 1.), obs=data)
def model(data=None): loc = pyro.param("loc", torch.tensor(2.0)) scale = pyro.param("scale", torch.tensor(1.0)) x = pyro.sample("x", dist.Normal(loc, scale), obs=data) return x
def model(): x = pyro.sample("x", dist.Normal(0., 1.)) pyro.sample("y", dist.Normal(x, 1.))
def guide(): q = pyro.param("q", torch.randn(3).exp(), constraint=constraints.simplex) pyro.sample("x", dist.Categorical(q))
def model(data): loc = pyro.param("loc", torch.tensor(0.0)) pyro.sample("x", dist.Normal(loc, 1.0), obs=data)
def guide_constrained_model(data): q = pyro.param("q", ops.exp(torch.randn(3)), constraint=constraints.simplex) pyro.sample("x", dist.Categorical(q))
def guide(): loc = pyro.param("loc", torch.tensor(0.)) y = pyro.sample("y", dist.Normal(loc, 1.)) pyro.sample("x", dist.Normal(y, 1.))
def model(data=None): loc = pyro.param("loc", torch.tensor(expected_mean)) scale = pyro.param("scale", torch.tensor(1.0)) with pyro.plate("data", 1000, dim=-1): x = pyro.sample("x", dist.Normal(loc, scale), obs=data) return x
def guide(data): guide_loc = pyro.param("guide_loc", torch.tensor(0.)) guide_scale = pyro.param("guide_scale", torch.tensor(1.), constraint=constraints.positive) pyro.sample("loc", dist.Normal(guide_loc, guide_scale))
def guide(data): guide_loc = pyro.param("guide_loc", torch.tensor(0.)) guide_scale = ops.exp(pyro.param("guide_scale_log", torch.tensor(0.))) pyro.sample("loc", dist.Normal(guide_loc, guide_scale))
def guide(data): guide_loc = pyro.param("guide_loc", torch.tensor(0.)) guide_scale = pyro.param( "guide_scale_log", torch.tensor(0.), torch.distributions.constraints.positive).exp() pyro.sample("loc", dist.Normal(guide_loc, guide_scale))