def main(ctx_factory=cl.create_some_context, casename="flame1d", user_input_file=None, snapshot_pattern="{casename}-{step:06d}-{rank:04d}.pkl", restart_step=None, restart_name=None, use_profiling=False, use_logmgr=False, use_lazy_eval=False): """Drive the 1D Flame example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() if restart_name is None: restart_name = casename """logging and profiling""" logmgr = initialize_logmgr(use_logmgr, filename=(f"{casename}.sqlite"), mode="wo", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: if use_lazy_eval: raise RuntimeError("Cannot run lazy with profiling.") queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) if use_lazy_eval: actx = PytatoArrayContext(queue) else: actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # default input values that will be read from input (if they exist) nviz = 100 nrestart = 100 nhealth = 100 nstatus = 1 current_dt = 1e-9 t_final = 1.e-3 order = 1 integrator = "rk4" if user_input_file: if rank == 0: with open(user_input_file) as f: input_data = yaml.load(f, Loader=yaml.FullLoader) else: input_data = None input_data = comm.bcast(input_data, root=0) #print(input_data) try: nviz = int(input_data["nviz"]) except KeyError: pass try: nrestart = int(input_data["nrestart"]) except KeyError: pass try: nhealth = int(input_data["nhealth"]) except KeyError: pass try: nstatus = int(input_data["nstatus"]) except KeyError: pass try: current_dt = float(input_data["current_dt"]) except KeyError: pass try: t_final = float(input_data["t_final"]) except KeyError: pass try: order = int(input_data["order"]) except KeyError: pass try: integrator = input_data["integrator"] except KeyError: pass # param sanity check allowed_integrators = ["rk4", "euler", "lsrk54", "lsrk144"] if (integrator not in allowed_integrators): error_message = "Invalid time integrator: {}".format(integrator) raise RuntimeError(error_message) timestepper = rk4_step if integrator == "euler": timestepper = euler_step if integrator == "lsrk54": timestepper = lsrk54_step if integrator == "lsrk144": timestepper = lsrk144_step if (rank == 0): print(f'#### Simluation control data: ####') print(f'\tnviz = {nviz}') print(f'\tnrestart = {nrestart}') print(f'\tnhealth = {nhealth}') print(f'\tnstatus = {nstatus}') print(f'\tcurrent_dt = {current_dt}') print(f'\tt_final = {t_final}') print(f'\torder = {order}') print(f"\tTime integration {integrator}") print(f'#### Simluation control data: ####') restart_path = 'restart_data/' viz_path = 'viz_data/' #if(rank == 0): #if not os.path.exists(restart_path): #os.makedirs(restart_path) #if not os.path.exists(viz_path): #os.makedirs(viz_path) dim = 2 exittol = .09 current_cfl = 1.0 current_t = 0 constant_cfl = False checkpoint_t = current_t current_step = 0 vel_burned = np.zeros(shape=(dim, )) vel_unburned = np.zeros(shape=(dim, )) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. fuel = "H2" allowed_fuels = ["H2", "C2H4"] if (fuel not in allowed_fuels): error_message = "Invalid fuel selection: {}".format(fuel) raise RuntimeError(error_message) if rank == 0: print(f"Fuel: {fuel}") from mirgecom.mechanisms import get_mechanism_cti if fuel == "C2H4": mech_cti = get_mechanism_cti("uiuc") elif fuel == "H2": mech_cti = get_mechanism_cti("sanDiego") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temp_unburned = 300.0 temp_ignition = 1500.0 # Parameters for calculating the amounts of fuel, oxidizer, and inert species if fuel == "C2H4": stoich_ratio = 3.0 if fuel == "H2": stoich_ratio = 0.5 equiv_ratio = 1.0 ox_di_ratio = 0.21 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index(fuel) i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 pres_unburned = one_atm # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temp_unburned}, {pres_unburned}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temp_unburned, pres_unburned, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. y_unburned = np.zeros(nspecies) can_t, rho_unburned, y_unburned = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # now find the conditions for the burned gas cantera_soln.equilibrate('TP') temp_burned, rho_burned, y_burned = cantera_soln.TDY pres_burned = cantera_soln.P pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) kappa = 1.6e-5 # Pr = mu*rho/alpha = 0.75 mu = 1.e-5 species_diffusivity = 1.e-5 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=species_diffusivity) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=temp_unburned, transport_model=transport_model) species_names = pyrometheus_mechanism.species_names print(f"Pyrometheus mechanism species names {species_names}") print( f"Unburned state (T,P,Y) = ({temp_unburned}, {pres_unburned}, {y_unburned}" ) print(f"Burned state (T,P,Y) = ({temp_burned}, {pres_burned}, {y_burned}") flame_start_loc = 0.10 flame_speed = 1000 # use the burned conditions with a lower temperature #bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.01, nspecies=nspecies, #temperature_left=temp_ignition, temperature_right=temp_unburned, #pressure_left=pres_burned, pressure_right=pres_unburned, #velocity_left=vel_burned, velocity_right=vel_unburned, #species_mass_left=y_burned, species_mass_right=y_unburned) bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.0005, nspecies=nspecies, temperature_right=temp_ignition, temperature_left=temp_unburned, pressure_right=pres_burned, pressure_left=pres_unburned, velocity_right=vel_burned, velocity_left=vel_unburned, species_mass_right=y_burned, species_mass_left=y_unburned) inflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_burned, temperature=temp_ignition, massfractions=y_burned, velocity=vel_burned) outflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_unburned, temperature=temp_unburned, massfractions=y_unburned, velocity=vel_unburned) def symmetry(nodes, eos, cv=None, **kwargs): dim = len(nodes) if cv is not None: #cv = split_conserved(dim, q) mass = cv.mass momentum = cv.momentum momentum[1] = -1.0 * momentum[1] ke = .5 * np.dot(cv.momentum, cv.momentum) / cv.mass energy = cv.energy species_mass = cv.species_mass return make_conserved(dim=dim, mass=mass, momentum=momentum, energy=energy, species_mass=species_mass) def dummy(nodes, eos, cv=None, **kwargs): dim = len(nodes) if cv is not None: #cv = split_conserved(dim, q) mass = cv.mass momentum = cv.momentum ke = .5 * np.dot(cv.momentum, cv.momentum) / cv.mass energy = cv.energy species_mass = cv.species_mass return make_conserved(dim=dim, mass=mass, momentum=momentum, energy=energy, species_mass=species_mass) inflow = PrescribedViscousBoundary(q_func=inflow_init) outflow = PrescribedViscousBoundary(q_func=outflow_init) wall_symmetry = PrescribedViscousBoundary(q_func=symmetry) wall_dummy = PrescribedViscousBoundary(q_func=dummy) wall = PrescribedViscousBoundary( ) # essentially a "dummy" use the interior solution for the exterior boundaries = { DTAG_BOUNDARY("Inflow"): inflow, DTAG_BOUNDARY("Outflow"): outflow, #DTAG_BOUNDARY("Wall"): wall_dummy} DTAG_BOUNDARY("Wall"): wall_symmetry } if restart_step is None: char_len = 0.0001 box_ll = (0.0, 0.0) box_ur = (0.2, 0.00125) num_elements = (int((box_ur[0] - box_ll[0]) / char_len), int((box_ur[1] - box_ll[1]) / char_len)) from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=box_ll, b=box_ur, n=num_elements, boundary_tag_to_face={ "Inflow": ["+x"], "Outflow": ["-x"], "Wall": ["+y", "-y"] }) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements else: # Restart from mirgecom.restart import read_restart_data restart_file = restart_path + snapshot_pattern.format( casename=restart_name, step=restart_step, rank=rank) restart_data = read_restart_data(actx, restart_file) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert comm.Get_size() == restart_data["num_parts"] if rank == 0: logging.info("Making discretization") discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) if restart_step is None: if rank == 0: logging.info("Initializing soln.") # for Discontinuity initial conditions current_state = bulk_init(x_vec=nodes, eos=eos, time=0.) # for uniform background initial condition #current_state = bulk_init(nodes, eos=eos) else: current_t = restart_data["t"] current_step = restart_step #current_state = make_fluid_restart_state(actx, discr.discr_from_dd("vol"), restart_data["state"]) current_state = restart_data["state"] vis_timer = None log_cfl = LogUserQuantity(name="cfl", value=current_cfl) if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr_set_time(logmgr, current_step, current_t) logmgr.add_quantity(log_cfl, interval=nstatus) #logmgr_add_package_versions(logmgr) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s, "), ("cfl.max", "cfl = {value:1.4f}\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) try: logmgr.add_watches(["memory_usage.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["pyopencl_array_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr) initname = "flame1d" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return ( ns_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(cv=state)) def my_checkpoint(step, t, dt, state, force=False): do_health = force or check_step(step, nhealth) and step > 0 do_viz = force or check_step(step, nviz) do_restart = force or check_step(step, nrestart) do_status = force or check_step(step, nstatus) if do_viz or do_health: dv = eos.dependent_vars(state) errors = False if do_health: health_message = "" if check_naninf_local(discr, "vol", dv.pressure): errors = True health_message += "Invalid pressure data found.\n" elif check_range_local(discr, "vol", dv.pressure, min_value=1, max_value=2.e6): errors = True health_message += "Pressure data failed health check.\n" errors = comm.allreduce(errors, MPI.LOR) if errors: if rank == 0: logger.info("Fluid solution failed health check.") if health_message: logger.info(f"{rank=}: {health_message}") #if check_step(step, nrestart) and step != restart_step and not errors: if do_restart or errors: filename = restart_path + snapshot_pattern.format( step=step, rank=rank, casename=casename) restart_dictionary = { "local_mesh": local_mesh, "order": order, "state": state, "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nparts } write_restart_file(actx, restart_dictionary, filename, comm) if do_status or do_viz or errors: local_cfl = get_inviscid_cfl(discr, eos=eos, dt=dt, cv=state) max_cfl = nodal_max(discr, "vol", local_cfl) log_cfl.set_quantity(max_cfl) #if ((check_step(step, nviz) and step != restart_step) or errors): if do_viz or errors: def loc_fn(t): return flame_start_loc + flame_speed * t #exact_soln = PlanarDiscontinuity(dim=dim, disc_location=loc_fn, #sigma=0.0000001, nspecies=nspecies, #temperature_left=temp_ignition, temperature_right=temp_unburned, #pressure_left=pres_burned, pressure_right=pres_unburned, #velocity_left=vel_burned, velocity_right=vel_unburned, #species_mass_left=y_burned, species_mass_right=y_unburned) reaction_rates = eos.get_production_rates(cv=state) # conserved quantities viz_fields = [ #("cv", state), ("CV_rho", state.mass), ("CV_rhoU", state.momentum[0]), ("CV_rhoV", state.momentum[1]), ("CV_rhoE", state.energy) ] # species mass fractions viz_fields.extend( ("Y_" + species_names[i], state.species_mass[i] / state.mass) for i in range(nspecies)) # dependent variables viz_fields.extend([ ("DV", eos.dependent_vars(state)), #("exact_soln", exact_soln), ("reaction_rates", reaction_rates), ("cfl", local_cfl) ]) write_visfile(discr, viz_fields, visualizer, vizname=viz_path + casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) if errors: raise RuntimeError("Error detected by user checkpoint, exiting.") if rank == 0: logging.info("Stepping.") (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t_final=t_final, t=current_t, istep=current_step, logmgr=logmgr,eos=eos,dim=dim) if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state, force=True) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) exit()
def main(ctx_factory=cl.create_some_context, snapshot_pattern="flame1d-{step:06d}-{rank:04d}.pkl", restart_step=None, use_profiling=False, use_logmgr=False): """Drive the Y0 example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() """logging and profiling""" logmgr = initialize_logmgr(use_logmgr, filename="flame1d.sqlite", mode="wo", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) #nviz = 500 #nrestart = 500 nviz = 1 nrestart = 3 #current_dt = 5.0e-8 # stable with euler current_dt = 5.0e-8 # stable with rk4 #current_dt = 4e-7 # stable with lrsrk144 t_final = 1.5e-7 dim = 2 order = 1 exittol = 1000000000000 #t_final = 0.001 current_cfl = 1.0 current_t = 0 constant_cfl = False nstatus = 10000000000 rank = 0 checkpoint_t = current_t current_step = 0 vel_burned = np.zeros(shape=(dim, )) vel_unburned = np.zeros(shape=(dim, )) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti # uiuc C2H4 #mech_cti = get_mechanism_cti("uiuc") # sanDiego H2 mech_cti = get_mechanism_cti("sanDiego") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temp_unburned = 300.0 temp_ignition = 1500.0 # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 # H2 stoich_ratio = 0.5 #C2H4 #stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen # C2H4 #i_fu = cantera_soln.species_index("C2H4") # H2 i_fu = cantera_soln.species_index("H2") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 pres_unburned = one_atm # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temp_unburned}, {pres_unburned}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temp_unburned, pres_unburned, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. y_unburned = np.zeros(nspecies) can_t, rho_unburned, y_unburned = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # now find the conditions for the burned gas cantera_soln.equilibrate('TP') temp_burned, rho_burned, y_burned = cantera_soln.TDY pres_burned = cantera_soln.P casename = "flame1d" pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) # C2H4 mu = 1.e-5 kappa = 1.6e-5 # Pr = mu*rho/alpha = 0.75 # H2 mu = 1.e-5 kappa = mu * 0.08988 / 0.75 # Pr = mu*rho/alpha = 0.75 species_diffusivity = 1.e-5 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=species_diffusivity) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=temp_unburned, transport_model=transport_model) species_names = pyrometheus_mechanism.species_names print(f"Pyrometheus mechanism species names {species_names}") print( f"Unburned state (T,P,Y) = ({temp_unburned}, {pres_unburned}, {y_unburned}" ) print(f"Burned state (T,P,Y) = ({temp_burned}, {pres_burned}, {y_burned}") flame_start_loc = 0.05 flame_speed = 1000 # use the burned conditions with a lower temperature bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.01, nspecies=nspecies, temperature_left=temp_ignition, temperature_right=temp_unburned, pressure_left=pres_burned, pressure_right=pres_unburned, velocity_left=vel_burned, velocity_right=vel_unburned, species_mass_left=y_burned, species_mass_right=y_unburned) inflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_burned, temperature=temp_ignition, massfractions=y_burned, velocity=vel_burned) outflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_unburned, temperature=temp_unburned, massfractions=y_unburned, velocity=vel_unburned) inflow = PrescribedViscousBoundary(q_func=inflow_init) outflow = PrescribedViscousBoundary(q_func=outflow_init) wall = PrescribedViscousBoundary( ) # essentially a "dummy" use the interior solution for the exterior from grudge import sym boundaries = { sym.DTAG_BOUNDARY("Inflow"): inflow, sym.DTAG_BOUNDARY("Outflow"): outflow, sym.DTAG_BOUNDARY("Wall"): wall } if restart_step is None: char_len = 0.001 box_ll = (0.0, 0.0) box_ur = (0.25, 0.01) num_elements = (int((box_ur[0] - box_ll[0]) / char_len), int((box_ur[1] - box_ll[1]) / char_len)) from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=box_ll, b=box_ur, n=num_elements, mesh_type="X", boundary_tag_to_face={ "Inflow": ["-x"], "Outflow": ["+x"], "Wall": ["+y", "-y"] }) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements else: # Restart with open(snapshot_pattern.format(step=restart_step, rank=rank), "rb") as f: restart_data = pickle.load(f) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert comm.Get_size() == restart_data["num_parts"] if rank == 0: logging.info("Making discretization") discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) if restart_step is None: if rank == 0: logging.info("Initializing soln.") # for Discontinuity initial conditions current_state = bulk_init(t=0., x_vec=nodes, eos=eos) # for uniform background initial condition #current_state = bulk_init(nodes, eos=eos) else: current_t = restart_data["t"] current_step = restart_step current_state = unflatten( actx, discr.discr_from_dd("vol"), obj_array_vectorize(actx.from_numpy, restart_data["state"])) vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ "step.max", "t_sim.max", "t_step.max", "t_log.max", "min_pressure", "max_pressure", "min_temperature", "max_temperature" ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["pyopencl_array_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr, order) # initname = initializer.__class__.__name__ initname = "flame1d" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) #timestepper = rk4_step #timestepper = lsrk54_step #timestepper = lsrk144_step timestepper = euler_step get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): # check for some troublesome output types inf_exists = not np.isfinite(discr.norm(state, np.inf)) if inf_exists: if rank == 0: logging.info( "Non-finite values detected in simulation, exiting...") # dump right now sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, step=999999999, t=t, dt=current_dt, nviz=1, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer, overwrite=True, s0=s0_sc, kappa=kappa_sc) exit() cv = split_conserved(dim=dim, q=state) return ( ns_operator(discr, q=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(cv)) def my_checkpoint(step, t, dt, state): write_restart = (check_step(step, nrestart) if step != restart_step else False) if write_restart is True: with open(snapshot_pattern.format(step=step, rank=rank), "wb") as f: pickle.dump( { "local_mesh": local_mesh, "state": obj_array_vectorize(actx.to_numpy, flatten(state)), "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nparts, }, f) def loc_fn(t): return flame_start_loc + flame_speed * t exact_soln = PlanarDiscontinuity(dim=dim, disc_location=loc_fn, sigma=0.0000001, nspecies=nspecies, temperature_left=temp_ignition, temperature_right=temp_unburned, pressure_left=pres_burned, pressure_right=pres_unburned, velocity_left=vel_burned, velocity_right=vel_unburned, species_mass_left=y_burned, species_mass_right=y_unburned) cv = split_conserved(dim, state) reaction_rates = eos.get_production_rates(cv) viz_fields = [("reaction_rates", reaction_rates)] return sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer, overwrite=True, exact_soln=exact_soln, viz_fields=viz_fields) if rank == 0: logging.info("Stepping.") (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t_final=t_final, t=current_t, istep=current_step, logmgr=logmgr,eos=eos,dim=dim) if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally") if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) exit()
def test_pyrometheus_mechanisms(ctx_factory, mechname, rate_tol, y0): """Test known pyrometheus mechanisms. This test reproduces a pyrometheus-native test in the MIRGE context. Tests that the Pyrometheus mechanism code gets the same thermo properties as the corresponding mechanism in Cantera. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 1 nel_1d = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) sol = cantera.Solution(phase_id="gas", source=mech_cti) prometheus_mechanism = pyro.get_thermochem_class(sol)(actx.np) nspecies = prometheus_mechanism.num_species print(f"PyrometheusMixture::NumSpecies = {nspecies}") press0 = 101500.0 temp0 = 300.0 y0s = np.zeros(shape=(nspecies, )) for i in range(nspecies - 1): y0s[i] = y0 / (10.0**(i + 1)) y0s[-1] = 1.0 - np.sum(y0s[:-1]) for fac in range(1, 11): pressin = fac * press0 tempin = fac * temp0 print(f"Testing (t,P) = ({tempin}, {pressin})") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) cantera_soln.TPY = tempin, pressin, y0s cantera_soln.equilibrate("UV") can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P can_e = cantera_soln.int_energy_mass can_k = cantera_soln.forward_rate_constants can_c = cantera_soln.concentrations # Chemistry functions for testing pyro chem can_r = cantera_soln.net_rates_of_progress can_omega = cantera_soln.net_production_rates ones = discr.zeros(actx) + 1.0 tin = can_t * ones pin = can_p * ones yin = make_obj_array([can_y[i] * ones for i in range(nspecies)]) prom_rho = prometheus_mechanism.get_density(pin, tin, yin) prom_e = prometheus_mechanism.get_mixture_internal_energy_mass( tin, yin) prom_t = prometheus_mechanism.get_temperature(prom_e, tin, yin, True) prom_p = prometheus_mechanism.get_pressure(prom_rho, tin, yin) prom_c = prometheus_mechanism.get_concentrations(prom_rho, yin) prom_k = prometheus_mechanism.get_fwd_rate_coefficients(prom_t, prom_c) # Pyro chemistry functions prom_r = prometheus_mechanism.get_net_rates_of_progress(prom_t, prom_c) prom_omega = prometheus_mechanism.get_net_production_rates( prom_rho, prom_t, yin) print(f"can(rho, y, p, t, e, k) = ({can_rho}, {can_y}, " f"{can_p}, {can_t}, {can_e}, {can_k})") print(f"prom(rho, y, p, t, e, k) = ({prom_rho}, {y0s}, " f"{prom_p}, {prom_t}, {prom_e}, {prom_k})") # For pyro chem testing print(f"can_r = {can_r}") print(f"prom_r = {prom_r}") print(f"can_omega = {can_omega}") print(f"prom_omega = {prom_omega}") assert discr.norm((prom_c - can_c) / can_c, np.inf) < 1e-14 assert discr.norm((prom_t - can_t) / can_t, np.inf) < 1e-14 assert discr.norm((prom_rho - can_rho) / can_rho, np.inf) < 1e-14 assert discr.norm((prom_p - can_p) / can_p, np.inf) < 1e-14 assert discr.norm((prom_e - can_e) / can_e, np.inf) < 1e-6 assert discr.norm((prom_k - can_k) / can_k, np.inf) < 1e-10 # Pyro chem test comparisons for i, rate in enumerate(can_r): assert discr.norm((prom_r[i] - rate), np.inf) < rate_tol for i, rate in enumerate(can_omega): assert discr.norm((prom_omega[i] - rate), np.inf) < rate_tol
def main(ctx_factory=cl.create_some_context, use_leap=False): """Drive example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 3 nel_1d = 16 order = 3 exittol = 10.0 t_final = 0.002 current_cfl = 1.0 velocity = np.zeros(shape=(dim, )) velocity[:dim] = 1.0 current_dt = .001 current_t = 0 constant_cfl = False nstatus = 1 nviz = 1 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 error_state = 0 from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) casename = "uiuc_mixture" # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) pyrometheus_mechanism = pyro.get_thermochem_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) y0s = np.zeros(shape=(nspecies, )) for i in range(nspecies - 1): y0s[i] = 1.0 / (10.0**(i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies - 1)]) y0s[nspecies - 1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} nodes = thaw(actx, discr.nodes()) current_state = initializer(x_vec=nodes, eos=eos) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): global checkpoint_t checkpoint_t = t return sim_checkpoint(discr, visualizer, eos, cv=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: error_state = 1 current_step = ex.step current_t = ex.t current_state = ex.state if current_t != checkpoint_t: # This check because !overwrite if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: error_state = 1 if error_state: raise ValueError("Simulation did not complete successfully.")
def test_pyrometheus_eos(ctx_factory, mechname, dim, y0, vel): """Test PyrometheusMixture EOS for all available mechanisms. Tests that the PyrometheusMixture EOS gets the same thermo properties (p, T, e) as the Pyrometheus-native mechanism code. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) sol = cantera.Solution(phase_id="gas", source=mech_cti) prometheus_mechanism = pyro.get_thermochem_class(sol)(actx.np) nspecies = prometheus_mechanism.num_species print(f"PrometheusMixture::Mechanism = {mechname}") print(f"PrometheusMixture::NumSpecies = {nspecies}") press0 = 101500.0 temp0 = 300.0 y0s = np.zeros(shape=(nspecies, )) for i in range(1, nspecies): y0s[i] = y0 / (10.0**i) y0s[0] = 1.0 - np.sum(y0s[1:]) velocity = vel * np.ones(shape=(dim, )) for fac in range(1, 11): tempin = fac * temp0 pressin = fac * press0 print(f"Testing {mechname}(t,P) = ({tempin}, {pressin})") ones = discr.zeros(actx) + 1.0 tin = tempin * ones pin = pressin * ones yin = y0s * ones tguess = 300.0 pyro_rho = prometheus_mechanism.get_density(pin, tin, yin) pyro_e = prometheus_mechanism.get_mixture_internal_energy_mass( tin, yin) pyro_t = prometheus_mechanism.get_temperature(pyro_e, tguess, yin, True) pyro_p = prometheus_mechanism.get_pressure(pyro_rho, pyro_t, yin) print(f"prom(rho, y, p, t, e) = ({pyro_rho}, {y0s}, " f"{pyro_p}, {pyro_t}, {pyro_e})") eos = PyrometheusMixture(prometheus_mechanism) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pyro_p, temperature=pyro_t, massfractions=y0s, velocity=velocity) cv = initializer(eos=eos, t=0, x_vec=nodes) p = eos.pressure(cv) temperature = eos.temperature(cv) internal_energy = eos.get_internal_energy(tin, yin) y = eos.species_fractions(cv) print(f"pyro_y = {y}") print(f"pyro_eos.p = {p}") print(f"pyro_eos.temp = {temperature}") print(f"pyro_eos.e = {internal_energy}") tol = 1e-14 assert discr.norm((cv.mass - pyro_rho) / pyro_rho, np.inf) < tol assert discr.norm((temperature - pyro_t) / pyro_t, np.inf) < tol assert discr.norm((internal_energy - pyro_e) / pyro_e, np.inf) < tol assert discr.norm((p - pyro_p) / pyro_p, np.inf) < tol
def test_pyrometheus_kinetics(ctx_factory, mechname, rate_tol, y0): """Test known pyrometheus reaction mechanisms. This test reproduces a pyrometheus-native test in the MIRGE context. Tests that the Pyrometheus mechanism code gets the same chemical properties and reaction rates as the corresponding mechanism in Cantera. The reactions are integrated in time and verified against a homogeneous reactor in Cantera. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 1 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) ones = discr.zeros(actx) + 1.0 # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) pyro_obj = pyro.get_thermochem_class(cantera_soln)(actx.np) nspecies = pyro_obj.num_species print(f"PrometheusMixture::NumSpecies = {nspecies}") tempin = 1500.0 pressin = cantera.one_atm print(f"Testing (t,P) = ({tempin}, {pressin})") # Homogeneous reactor to get test data equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 0.5 i_fu = cantera_soln.species_index("H2") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(shape=(nspecies, )) x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio cantera_soln.TPX = tempin, pressin, x # cantera_soln.equilibrate("UV") can_t, can_rho, can_y = cantera_soln.TDY # can_p = cantera_soln.P reactor = cantera.IdealGasConstPressureReactor(cantera_soln) sim = cantera.ReactorNet([reactor]) time = 0.0 for _ in range(50): time += 1.0e-6 sim.advance(time) # Cantera kinetics can_r = reactor.kinetics.net_rates_of_progress can_omega = reactor.kinetics.net_production_rates # Get state from Cantera can_t = reactor.T can_rho = reactor.density can_y = reactor.Y print(f"can_y = {can_y}") tin = can_t * ones rhoin = can_rho * ones yin = can_y * ones # Prometheus kinetics pyro_c = pyro_obj.get_concentrations(rhoin, yin) print(f"pyro_conc = {pyro_c}") pyro_r = pyro_obj.get_net_rates_of_progress(tin, pyro_c) pyro_omega = pyro_obj.get_net_production_rates(rhoin, tin, yin) # Print print(f"can_r = {can_r}") print(f"pyro_r = {pyro_r}") abs_diff = discr.norm(pyro_r - can_r, np.inf) if abs_diff > 1e-14: min_r = (np.abs(can_r)).min() if min_r > 0: assert discr.norm((pyro_r - can_r) / can_r, np.inf) < rate_tol else: assert discr.norm(pyro_r, np.inf) < rate_tol print(f"can_omega = {can_omega}") print(f"pyro_omega = {pyro_omega}") for i, omega in enumerate(can_omega): omin = np.abs(omega).min() if omin > 1e-12: assert discr.norm( (pyro_omega[i] - omega) / omega, np.inf) < 1e-8 else: assert discr.norm(pyro_omega[i], np.inf) < 1e-12
def run_init( ctx_factory=cl.create_some_context, snapshot_pattern="flame1d-{step:06d}-{rank:04d}.pkl", ): """Drive the Y0 example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 order = 1 vel_burned = np.zeros(shape=(dim, )) vel_unburned = np.zeros(shape=(dim, )) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti # uiuc C2H4 #mech_cti = get_mechanism_cti("uiuc") # sanDiego H2 mech_cti = get_mechanism_cti("sanDiego") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temp_unburned = 300.0 temp_ignition = 1500.0 # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 # H2 stoich_ratio = 0.5 #C2H4 #stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen # C2H4 #i_fu = cantera_soln.species_index("C2H4") # H2 i_fu = cantera_soln.species_index("H2") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 pres_unburned = one_atm # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temp_unburned}, {pres_unburned}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temp_unburned, pres_unburned, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. y_unburned = np.zeros(nspecies) can_t, rho_unburned, y_unburned = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # now find the conditions for the burned gas cantera_soln.equilibrate('TP') temp_burned, rho_burned, y_burned = cantera_soln.TDY pres_burned = cantera_soln.P casename = "flame1d" pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) # C2H4 mu = 1.e-5 kappa = 1.6e-5 # Pr = mu*rho/alpha = 0.75 # H2 mu = 1.e-5 kappa = mu * 0.08988 / 0.75 # Pr = mu*rho/alpha = 0.75 species_diffusivity = 1.e-5 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=species_diffusivity) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=temp_unburned, transport_model=transport_model) species_names = pyrometheus_mechanism.species_names print(f"Pyrometheus mechanism species names {species_names}") print( f"Unburned state (T,P,Y) = ({temp_unburned}, {pres_unburned}, {y_unburned}" ) print(f"Burned state (T,P,Y) = ({temp_burned}, {pres_burned}, {y_burned}") flame_start_loc = 0.05 flame_speed = 1000 # use the burned conditions with a lower temperature bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.01, nspecies=nspecies, temperature_left=temp_ignition, temperature_right=temp_unburned, pressure_left=pres_burned, pressure_right=pres_unburned, velocity_left=vel_burned, velocity_right=vel_unburned, species_mass_left=y_burned, species_mass_right=y_unburned) char_len = 0.001 box_ll = (0.0, 0.0) box_ur = (0.25, 0.01) num_elements = (int((box_ur[0] - box_ll[0]) / char_len), int((box_ur[1] - box_ll[1]) / char_len)) from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=box_ll, b=box_ur, n=num_elements, mesh_type="X", boundary_tag_to_face={ "Inflow": ["-x"], "Outflow": ["+x"], "Wall": ["+y", "-y"] }) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) # for Discontinuity initial conditions state = bulk_init(t=0., x_vec=nodes, eos=eos) # for uniform background initial condition #current_state = bulk_init(nodes, eos=eos) visualizer = make_visualizer(discr, order) with open(snapshot_pattern.format(step=0, rank=rank), "wb") as f: pickle.dump( { "local_mesh": local_mesh, "state": obj_array_vectorize(actx.to_numpy, flatten(state)), "t": 0., "step": 0, "global_nelements": global_nelements, "num_parts": nparts, }, f) cv = split_conserved(dim, state) reaction_rates = eos.get_production_rates(cv) viz_fields = [("reaction_rates", reaction_rates)] sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, nviz=0, comm=comm, overwrite=True, viz_fields=viz_fields) exit()
def _pyro_thermochem_wrapper_class(cantera_soln, temperature_niter=5): """Return a MIRGE-compatible wrapper for a :mod:`pyrometheus` mechanism class. Dynamically creates a class that inherits from a :class:`pyrometheus.Thermochemistry` class and overrides a couple of the methods to adapt it to :mod:`mirgecom`'s needs. - get_concentrations: overrides :class:`pyrometheus.Thermochemistry` version of the same function, pinning any negative concentrations due to slightly negative massfractions (which are OK) back to 0. - get_temperature: MIRGE-specific interface to use a hard-coded Newton solver to find a temperature from an input state. Parameters ---------- cantera_soln: Cantera solution Cantera solution from which to create the thermochemical mechanism temperature_niter: integer Number of Newton iterations in `get_temperature` (default=5) """ import pyrometheus as pyro pyro_class = pyro.get_thermochem_class(cantera_soln) class PyroWrapper(pyro_class): # This bit disallows negative concentrations and instead # pins them to 0. mass_fractions can sometimes be slightly # negative and that's ok. def get_concentrations(self, rho, mass_fractions): concs = self.iwts * rho * mass_fractions # ensure non-negative concentrations zero = self._pyro_zeros_like(concs[0]) for i in range(self.num_species): concs[i] = self.usr_np.where(self.usr_np.less(concs[i], 0), zero, concs[i]) return concs # This is the temperature update for *get_temperature*. Having this # separated out allows it to be used in the fluid drivers for evaluating # convergence of the temperature calculation. def get_temperature_update_energy(self, e_in, t_in, y): pv_func = self.get_mixture_specific_heat_cv_mass he_func = self.get_mixture_internal_energy_mass return (e_in - he_func(t_in, y)) / pv_func(t_in, y) # This hard-codes the number of Newton iterations because the convergence # check is not compatible with lazy evaluation. Instead, we plan to check # the temperature residual at simulation health checking time. # FIXME: Occasional convergence check is other-than-ideal; revisit asap. # - could adapt dt or num_iter on temperature convergence? # - can pass-in num_iter? def get_temperature(self, energy, temperature_guess, species_mass_fractions): """Compute the temperature of the mixture from thermal energy. Parameters ---------- energy: :class:`~meshmode.dof_array.DOFArray` The internal (thermal) energy of the mixture. temperature_guess: :class:`~meshmode.dof_array.DOFArray` An initial starting temperature for the Newton iterations. species_mass_fractions: numpy.ndarray An object array of :class:`~meshmode.dof_array.DOFArray` with the mass fractions of the mixture species. Returns ------- :class:`~meshmode.dof_array.DOFArray` The mixture temperature after a fixed number of Newton iterations. """ num_iter = temperature_niter t_i = temperature_guess for _ in range(num_iter): t_i = t_i + self.get_temperature_update_energy( energy, t_i, species_mass_fractions) return t_i return PyroWrapper
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equlibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. init_temperature = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({init_temperature}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = init_temperature, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=init_temperature) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim, )) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_state = restart_data["state"] else: rst_state = restart_data["state"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection( actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_state = connection(rst_state) else: # Set the current state from time 0 current_state = initializer(eos=eos, x_vec=nodes) # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"{current_state=}") print(f"Initial DV pressure: {eos.pressure(current_state)}") print(f"Initial DV temperature: {eos.temperature(current_state)}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field=None, dv=None, production_rates=None, cfl=None): if dv is None: dv = eos.dependent_vars(state) if production_rates is None: production_rates = eos.get_production_rates(state) if ts_field is None: ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=state) viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "state": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 2.4e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", dv.temperature, 1.498e3, 1.52e3): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") return health_error def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: from mirgecom.inviscid import get_inviscid_timestep ts_field = current_cfl * get_inviscid_timestep( discr, eos=eos, cv=state) from grudge.op import nodal_min dt = nodal_min(discr, "vol", ts_field) cfl = current_cfl else: from mirgecom.inviscid import get_inviscid_cfl ts_field = get_inviscid_cfl(discr, eos=eos, dt=dt, cv=state) from grudge.op import nodal_max cfl = nodal_max(discr, "vol", ts_field) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): try: dv = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: dv = eos.dependent_vars(state) from mirgecom.simutil import allsync health_errors = allsync(my_health_check(dv), comm, op=MPI.LOR) if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=state) if do_status: my_write_status(dt, cfl) if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: production_rates = eos.get_production_rates(state) if dv is None: dv = eos.dependent_vars(state) my_write_viz(step=step, t=t, dt=dt, state=state, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, dt=dt, state=state) my_write_restart(step=step, t=t, state=state) raise return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): return (euler_operator( discr, cv=state, time=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(state)) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, eos, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_dv = eos.dependent_vars(current_state) final_dm = eos.get_production_rates(current_state) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=current_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=current_state, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl) my_write_restart(step=current_step, t=current_t, state=current_state) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nparts = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 current_step = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nhealth = 1 nrestart = 5 nviz = 1 dim = 2 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["nparts"] == nparts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization( actx, local_mesh, order=order, mpi_communicator=comm ) nodes = thaw(actx, discr.nodes()) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) pyrometheus_mechanism = pyro.get_thermochem_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) y0s = np.zeros(shape=(nspecies,)) for i in range(nspecies-1): y0s[i] = 1.0 / (10.0 ** (i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies-1)]) y0s[nspecies-1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) velocity = np.zeros(shape=(dim,)) + 1.0 initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) boundaries = { BTAG_ALL: PrescribedInviscidBoundary(fluid_solution_func=initializer) } nodes = thaw(actx, discr.nodes()) if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_state = restart_data["state"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_state = initializer(x_vec=nodes, eos=eos) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(component_errors): status_msg = ( "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) if rank == 0: logger.info(status_msg) def my_write_viz(step, t, state, dv=None, exact=None, resid=None): viz_fields = [("cv", state)] if dv is None: dv = eos.dependent_vars(state) if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv), ("exact_soln", exact), ("residual", resid)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "state": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nparts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 1.1e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .09 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): try: dv = None exact = None component_errors = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: dv = eos.dependent_vars(state) exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, state, exact) from mirgecom.simutil import allsync health_errors = allsync(my_health_check(dv, component_errors), comm, op=MPI.LOR) if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: if dv is None: dv = eos.dependent_vars(state) if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=state, dv=dv, exact=exact, resid=resid) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, state, exact) my_write_status(component_errors) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=state) my_write_restart(step=step, t=t, state=state) raise dt = get_sim_timestep(discr, state, t, dt, current_cfl, eos, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): return euler_operator(discr, cv=state, time=t, boundaries=boundaries, eos=eos) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, eos, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state, t=current_t, t_final=t_final, eos=eos, dim=dim) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_dv = eos.dependent_vars(current_state) final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state - final_exact my_write_viz(step=current_step, t=current_t, state=current_state, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, casename="autoignition", use_leap=False, restart_step=None, restart_name=None): """Drive example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 nel_1d = 8 order = 1 # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equlibrium, set t_final >= 40ms. t_final = 1e-8 current_cfl = 1.0 velocity = np.zeros(shape=(dim, )) current_dt = 1e-9 current_t = 0 constant_cfl = False nstatus = 1 nviz = 5 nrestart = 5 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -0.005 box_ur = 0.005 error_state = False debug = False from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() restart_file_pattern = "{casename}-{step:04d}-{rank:04d}.pkl" restart_path = "restart_data/" if restart_step: if not restart_name: restart_name = casename rst_filename = (restart_path + restart_file_pattern.format( casename=restart_name, step=restart_step, rank=rank)) from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["nparts"] == nproc else: from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. init_temperature = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({init_temperature}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = init_temperature, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=init_temperature) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if restart_step: current_t = restart_data["t"] current_step = restart_step current_state = restart_data["state"] else: # Set the current state from time 0 current_state = initializer(eos=eos, x_vec=nodes, t=0) # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"{current_state=}") print(f"Initial DV pressure: {eos.pressure(current_state)}") print(f"Initial DV temperature: {eos.temperature(current_state)}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return (euler_operator( discr, cv=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(state)) def my_checkpoint(step, t, dt, state): if check_step(step, nrestart) and step != restart_step: rst_filename = (restart_path + restart_file_pattern.format( casename=casename, step=step, rank=rank)) rst_data = { "local_mesh": local_mesh, "state": current_state, "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_filename, comm) # awful - computes potentially expensive viz quantities # regardless of whether it is time to viz reaction_rates = eos.get_production_rates(state) viz_fields = [("reaction_rates", reaction_rates)] return sim_checkpoint(discr, visualizer, eos, cv=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, constant_cfl=constant_cfl, comm=comm, viz_fields=viz_fields) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: error_state = True current_step = ex.step current_t = ex.t current_state = ex.state if not check_step(current_step, nviz): # If final step not an output step if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: error_state = True if error_state: raise ValueError("Simulation did not complete successfully.")