def test_kv_with_no_charge(): from random import seed seed(0) from pyrticle.units import SIUnitsWithNaturalConstants units = SIUnitsWithNaturalConstants() # discretization setup ---------------------------------------------------- from hedge.mesh import make_cylinder_mesh from hedge.backends import guess_run_context rcon = guess_run_context([]) tube_length = 100 * units.MM mesh = make_cylinder_mesh(radius=25 * units.MM, height=tube_length, periodic=True) discr = rcon.make_discretization(mesh, order=3) dt = discr.dt_factor(units.VACUUM_LIGHT_SPEED()) / 2 final_time = 1 * units.M / units.VACUUM_LIGHT_SPEED() nsteps = int(final_time / dt) + 1 dt = final_time / nsteps # particles setup --------------------------------------------------------- from pyrticle.cloud import PicMethod from pyrticle.deposition.shape import ShapeFunctionDepositor from pyrticle.pusher import MonomialParticlePusher method = PicMethod(discr, units, ShapeFunctionDepositor(), MonomialParticlePusher(), 3, 3) nparticles = 10000 cloud_charge = 1e-9 * units.C electrons_per_particle = cloud_charge / nparticles / units.EL_CHARGE el_energy = 5.2e6 * units.EV gamma = el_energy / units.EL_REST_ENERGY() beta = (1 - 1 / gamma**2)**0.5 from pyrticle.distribution import KVZIntervalBeam beam = KVZIntervalBeam(units, total_charge=0, p_charge=0, p_mass=electrons_per_particle * units.EL_MASS, radii=2 * [2.5 * units.MM], emittances=2 * [5 * units.MM * units.MRAD], z_length=5 * units.MM, z_pos=10 * units.MM, beta=beta) state = method.make_state() method.add_particles(state, beam.generate_particles(), nparticles) # diagnostics setup ------------------------------------------------------- from pytools.log import LogManager from pyrticle.log import add_beam_quantities, StateObserver observer = StateObserver(method, None) logmgr = LogManager(mode="w") add_beam_quantities(logmgr, observer, axis=0, beam_axis=2) from pyrticle.distribution import KVPredictedRadius logmgr.add_quantity( KVPredictedRadius(dt, beam_v=beta * units.VACUUM_LIGHT_SPEED(), predictor=beam.get_rms_predictor(axis=0), suffix="x_rms")) logmgr.add_quantity( KVPredictedRadius(dt, beam_v=beta * units.VACUUM_LIGHT_SPEED(), predictor=beam.get_total_predictor(axis=0), suffix="x_total")) # timestep loop ----------------------------------------------------------- vel = method.velocities(state) from hedge.tools import join_fields def rhs(t, y): return join_fields([ vel, 0 * vel, 0, # drecon ]) from hedge.timestep.runge_kutta import LSRK4TimeStepper stepper = LSRK4TimeStepper() t = 0 from pyrticle.cloud import TimesteppablePicState ts_state = TimesteppablePicState(method, state) for step in xrange(nsteps): observer.set_fields_and_state(None, ts_state.state) logmgr.tick() ts_state = stepper(ts_state, t, dt, rhs) method.upkeep(ts_state.state) t += dt logmgr.tick() _, _, err_table = logmgr.get_expr_dataset( "(rx_rms-rx_rms_theory)/rx_rms_theory") rel_max_rms_error = max(err for step, err in err_table) assert rel_max_rms_error < 0.01
class PICRunner(object): def __init__(self): from pyrticle.units import SIUnitsWithNaturalConstants self.units = units = SIUnitsWithNaturalConstants() ui = PICCPyUserInterface(units) setup = self.setup = ui.gather() from pytools.log import LogManager import os.path self.logmgr = LogManager(os.path.join( setup.output_path, "pic.dat"), "w") from hedge.backends import guess_run_context self.rcon = guess_run_context([]) if self.rcon.is_head_rank: mesh = self.rcon.distribute_mesh(setup.mesh) else: mesh = self.rcon.receive_mesh() self.discr = discr = \ self.rcon.make_discretization(mesh, order=setup.element_order, debug=setup.dg_debug) self.logmgr.set_constant("elements_total", len(setup.mesh.elements)) self.logmgr.set_constant("elements_local", len(mesh.elements)) self.logmgr.set_constant("element_order", setup.element_order) # em operator --------------------------------------------------------- maxwell_kwargs = { "epsilon": units.EPSILON0, "mu": units.MU0, "flux_type": setup.maxwell_flux_type, "bdry_flux_type": setup.maxwell_bdry_flux_type } if discr.dimensions == 3: from hedge.models.em import MaxwellOperator self.maxwell_op = MaxwellOperator(**maxwell_kwargs) elif discr.dimensions == 2: from hedge.models.em import TEMaxwellOperator self.maxwell_op = TEMaxwellOperator(**maxwell_kwargs) else: raise ValueError, "invalid mesh dimension" if setup.chi is not None: from pyrticle.hyperbolic import ECleaningMaxwellOperator self.maxwell_op = ECleaningMaxwellOperator(self.maxwell_op, chi=setup.chi, phi_decay=setup.phi_decay) if setup.phi_filter is not None: from pyrticle.hyperbolic import PhiFilter from hedge.discretization import Filter, ExponentialFilterResponseFunction em_filters.append( PhiFilter(maxwell_op, Filter(discr, ExponentialFilterResponseFunction(*setup.phi_filter)))) # timestepping setup -------------------------------------------------- goal_dt = self.maxwell_op.estimate_timestep(discr) * setup.dt_scale self.nsteps = int(setup.final_time/goal_dt)+1 self.dt = setup.final_time/self.nsteps self.stepper = setup.timestepper_maker(self.dt) # particle setup ------------------------------------------------------ from pyrticle.cloud import PicMethod, PicState, \ optimize_shape_bandwidth, \ guess_shape_bandwidth method = self.method = PicMethod(discr, units, setup.depositor, setup.pusher, dimensions_pos=setup.dimensions_pos, dimensions_velocity=setup.dimensions_velocity, debug=setup.debug) self.state = method.make_state() method.add_particles( self.state, setup.distribution.generate_particles(), setup.nparticles) self.total_charge = setup.nparticles*setup.distribution.mean()[2][0] if isinstance(setup.shape_bandwidth, str): if setup.shape_bandwidth == "optimize": optimize_shape_bandwidth(method, self.state, setup.distribution.get_rho_interpolant( discr, self.total_charge), setup.shape_exponent) elif setup.shape_bandwidth == "guess": guess_shape_bandwidth(method, self.state, setup.shape_exponent) else: raise ValueError, "invalid shape bandwidth setting '%s'" % ( setup.shape_bandwidth) else: from pyrticle._internal import PolynomialShapeFunction method.depositor.set_shape_function( self.state, PolynomialShapeFunction( float(setup.shape_bandwidth), method.mesh_data.dimensions, setup.shape_exponent, )) # initial condition --------------------------------------------------- if "no_ic" in setup.debug: self.fields = self.maxwell_op.assemble_eh(discr=discr) else: from pyrticle.cloud import compute_initial_condition self.fields = compute_initial_condition(self.rcon, discr, method, self.state, maxwell_op=self.maxwell_op, potential_bc=setup.potential_bc, force_zero=False) # rhs calculators ----------------------------------------------------- from pyrticle.cloud import \ FieldRhsCalculator, \ FieldToParticleRhsCalculator, \ ParticleRhsCalculator, \ ParticleToFieldRhsCalculator self.f_rhs_calculator = FieldRhsCalculator(self.method, self.maxwell_op) self.p_rhs_calculator = ParticleRhsCalculator(self.method, self.maxwell_op) self.f2p_rhs_calculator = FieldToParticleRhsCalculator(self.method, self.maxwell_op) self.p2f_rhs_calculator = ParticleToFieldRhsCalculator(self.method, self.maxwell_op) # instrumentation setup ----------------------------------------------- self.add_instrumentation(self.logmgr) def add_instrumentation(self, logmgr): from pytools.log import \ add_simulation_quantities, \ add_general_quantities, \ add_run_info, ETA from pyrticle.log import add_particle_quantities, add_field_quantities, \ add_beam_quantities, add_currents setup = self.setup from pyrticle.log import StateObserver self.observer = StateObserver(self.method, self.maxwell_op) self.observer.set_fields_and_state(self.fields, self.state) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) add_particle_quantities(logmgr, self.observer) add_field_quantities(logmgr, self.observer) if setup.beam_axis is not None and setup.beam_diag_axis is not None: add_beam_quantities(logmgr, self.observer, axis=setup.beam_diag_axis, beam_axis=setup.beam_axis) if setup.tube_length is not None: from hedge.tools import unit_vector add_currents(logmgr, self.observer, unit_vector(self.method.dimensions_velocity, setup.beam_axis), setup.tube_length) self.method.add_instrumentation(logmgr, self.observer) self.f_rhs_calculator.add_instrumentation(logmgr) if hasattr(self.stepper, "add_instrumentation"): self.stepper.add_instrumentation(logmgr) mean_beta = self.method.mean_beta(self.state) gamma = self.method.units.gamma_from_beta(mean_beta) logmgr.set_constant("dt", self.dt) logmgr.set_constant("beta", mean_beta) logmgr.set_constant("gamma", gamma) logmgr.set_constant("v", mean_beta*self.units.VACUUM_LIGHT_SPEED()) logmgr.set_constant("Q0", self.total_charge) logmgr.set_constant("n_part_0", setup.nparticles) logmgr.set_constant("pmass", setup.distribution.mean()[3][0]) logmgr.set_constant("chi", setup.chi) logmgr.set_constant("phi_decay", setup.phi_decay) logmgr.set_constant("shape_radius_setup", setup.shape_bandwidth) logmgr.set_constant("shape_radius", self.method.depositor.shape_function.radius) logmgr.set_constant("shape_exponent", self.method.depositor.shape_function.exponent) from pytools.log import IntervalTimer self.vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(self.vis_timer) logmgr.add_quantity(ETA(self.nsteps)) logmgr.add_watches(setup.watch_vars) def inner_run(self): t = 0 setup = self.setup setup.hook_startup(self) vis_order = setup.vis_order if vis_order is None: vis_order = setup.element_order if vis_order != setup.element_order: vis_discr = self.rcon.make_discretization(self.discr.mesh, order=vis_order, debug=setup.dg_debug) from hedge.discretization import Projector vis_proj = Projector(self.discr, vis_discr) else: vis_discr = self.discr def vis_proj(f): return f from hedge.visualization import SiloVisualizer vis = SiloVisualizer(vis_discr) fields = self.fields self.observer.set_fields_and_state(fields, self.state) from hedge.tools import make_obj_array from pyrticle.cloud import TimesteppablePicState def visualize(observer): sub_timer = self.vis_timer.start_sub_timer() import os.path visf = vis.make_file(os.path.join( setup.output_path, setup.vis_pattern % step)) self.method.add_to_vis(vis, visf, observer.state, time=t, step=step) vis.add_data(visf, [(name, vis_proj(fld)) for name, fld in setup.hook_vis_quantities(observer)], time=t, step=step) setup.hook_visualize(self, vis, visf, observer) visf.close() sub_timer.stop().submit() from hedge.timestep.multirate_ab import TwoRateAdamsBashforthTimeStepper if not isinstance(self.stepper, TwoRateAdamsBashforthTimeStepper): def rhs(t, fields_and_state): fields, ts_state = fields_and_state state_f = lambda: ts_state.state fields_f = lambda: fields fields_rhs = ( self.f_rhs_calculator(t, fields_f, state_f) + self.p2f_rhs_calculator(t, fields_f, state_f)) state_rhs = ( self.p_rhs_calculator(t, fields_f, state_f) + self.f2p_rhs_calculator(t, fields_f, state_f)) return make_obj_array([fields_rhs, state_rhs]) step_args = (self.dt, rhs) else: def add_unwrap(rhs): def unwrapping_rhs(t, fields, ts_state): return rhs(t, fields, lambda: ts_state().state) return unwrapping_rhs step_args = (( add_unwrap(self.f_rhs_calculator), add_unwrap(self.p2f_rhs_calculator), add_unwrap(self.f2p_rhs_calculator), add_unwrap(self.p_rhs_calculator), ),) y = make_obj_array([ fields, TimesteppablePicState(self.method, self.state) ]) del self.state try: from hedge.timestep import times_and_steps step_it = times_and_steps( max_steps=self.nsteps, logmgr=self.logmgr, max_dt_getter=lambda t: self.dt) for step, t, dt in step_it: self.method.upkeep(y[1].state) if step % setup.vis_interval == 0: visualize(self.observer) y = self.stepper(y, t, *step_args) fields, ts_state = y self.observer.set_fields_and_state(fields, ts_state.state) setup.hook_after_step(self, self.observer) finally: vis.close() self.discr.close() self.logmgr.save() setup.hook_when_done(self) def run(self): if self.setup.profile_output_filename is not None: from cProfile import Profile prof = Profile() try: prof.runcall(self.inner_run) finally: from lsprofcalltree import KCacheGrind kg = KCacheGrind(prof) kg.output(open(self.setup.profile_output_filename, "w")) else: self.inner_run()
def test_kv_with_no_charge(): from random import seed seed(0) from pyrticle.units import SIUnitsWithNaturalConstants units = SIUnitsWithNaturalConstants() # discretization setup ---------------------------------------------------- from hedge.mesh import make_cylinder_mesh from hedge.backends import guess_run_context rcon = guess_run_context([]) tube_length = 100*units.MM mesh = make_cylinder_mesh(radius=25*units.MM, height=tube_length, periodic=True) discr = rcon.make_discretization(mesh, order=3) dt = discr.dt_factor(units.VACUUM_LIGHT_SPEED()) / 2 final_time = 1*units.M/units.VACUUM_LIGHT_SPEED() nsteps = int(final_time/dt)+1 dt = final_time/nsteps # particles setup --------------------------------------------------------- from pyrticle.cloud import PicMethod from pyrticle.deposition.shape import ShapeFunctionDepositor from pyrticle.pusher import MonomialParticlePusher method = PicMethod(discr, units, ShapeFunctionDepositor(), MonomialParticlePusher(), 3, 3) nparticles = 10000 cloud_charge = 1e-9 * units.C electrons_per_particle = cloud_charge/nparticles/units.EL_CHARGE el_energy = 5.2e6 * units.EV gamma = el_energy/units.EL_REST_ENERGY() beta = (1-1/gamma**2)**0.5 from pyrticle.distribution import KVZIntervalBeam beam = KVZIntervalBeam(units, total_charge=0, p_charge=0, p_mass=electrons_per_particle*units.EL_MASS, radii=2*[2.5*units.MM], emittances=2*[5 * units.MM * units.MRAD], z_length=5*units.MM, z_pos=10*units.MM, beta=beta) state = method.make_state() method.add_particles(state, beam.generate_particles(), nparticles) # diagnostics setup ------------------------------------------------------- from pytools.log import LogManager from pyrticle.log import add_beam_quantities, StateObserver observer = StateObserver(method, None) logmgr = LogManager(mode="w") add_beam_quantities(logmgr, observer, axis=0, beam_axis=2) from pyrticle.distribution import KVPredictedRadius logmgr.add_quantity(KVPredictedRadius(dt, beam_v=beta*units.VACUUM_LIGHT_SPEED(), predictor=beam.get_rms_predictor(axis=0), suffix="x_rms")) logmgr.add_quantity(KVPredictedRadius(dt, beam_v=beta*units.VACUUM_LIGHT_SPEED(), predictor=beam.get_total_predictor(axis=0), suffix="x_total")) # timestep loop ----------------------------------------------------------- vel = method.velocities(state) from hedge.tools import join_fields def rhs(t, y): return join_fields([ vel, 0*vel, 0, # drecon ]) from hedge.timestep.runge_kutta import LSRK4TimeStepper stepper = LSRK4TimeStepper() t = 0 from pyrticle.cloud import TimesteppablePicState ts_state = TimesteppablePicState(method, state) for step in xrange(nsteps): observer.set_fields_and_state(None, ts_state.state) logmgr.tick() ts_state = stepper(ts_state, t, dt, rhs) method.upkeep(ts_state.state) t += dt logmgr.tick() _, _, err_table = logmgr.get_expr_dataset("(rx_rms-rx_rms_theory)/rx_rms_theory") rel_max_rms_error = max(err for step, err in err_table) assert rel_max_rms_error < 0.01
class PICRunner(object): def __init__(self): from pyrticle.units import SIUnitsWithNaturalConstants self.units = units = SIUnitsWithNaturalConstants() ui = PICCPyUserInterface(units) setup = self.setup = ui.gather() from pytools.log import LogManager import os.path self.logmgr = LogManager(os.path.join(setup.output_path, "pic.dat"), "w") from hedge.backends import guess_run_context self.rcon = guess_run_context([]) if self.rcon.is_head_rank: mesh = self.rcon.distribute_mesh(setup.mesh) else: mesh = self.rcon.receive_mesh() self.discr = discr = \ self.rcon.make_discretization(mesh, order=setup.element_order, debug=setup.dg_debug) self.logmgr.set_constant("elements_total", len(setup.mesh.elements)) self.logmgr.set_constant("elements_local", len(mesh.elements)) self.logmgr.set_constant("element_order", setup.element_order) # em operator --------------------------------------------------------- maxwell_kwargs = { "epsilon": units.EPSILON0, "mu": units.MU0, "flux_type": setup.maxwell_flux_type, "bdry_flux_type": setup.maxwell_bdry_flux_type } if discr.dimensions == 3: from hedge.models.em import MaxwellOperator self.maxwell_op = MaxwellOperator(**maxwell_kwargs) elif discr.dimensions == 2: from hedge.models.em import TEMaxwellOperator self.maxwell_op = TEMaxwellOperator(**maxwell_kwargs) else: raise ValueError, "invalid mesh dimension" if setup.chi is not None: from pyrticle.hyperbolic import ECleaningMaxwellOperator self.maxwell_op = ECleaningMaxwellOperator( self.maxwell_op, chi=setup.chi, phi_decay=setup.phi_decay) if setup.phi_filter is not None: from pyrticle.hyperbolic import PhiFilter from hedge.discretization import Filter, ExponentialFilterResponseFunction em_filters.append( PhiFilter( maxwell_op, Filter( discr, ExponentialFilterResponseFunction( *setup.phi_filter)))) # timestepping setup -------------------------------------------------- goal_dt = self.maxwell_op.estimate_timestep(discr) * setup.dt_scale self.nsteps = int(setup.final_time / goal_dt) + 1 self.dt = setup.final_time / self.nsteps self.stepper = setup.timestepper_maker(self.dt) # particle setup ------------------------------------------------------ from pyrticle.cloud import PicMethod, PicState, \ optimize_shape_bandwidth, \ guess_shape_bandwidth method = self.method = PicMethod( discr, units, setup.depositor, setup.pusher, dimensions_pos=setup.dimensions_pos, dimensions_velocity=setup.dimensions_velocity, debug=setup.debug) self.state = method.make_state() method.add_particles(self.state, setup.distribution.generate_particles(), setup.nparticles) self.total_charge = setup.nparticles * setup.distribution.mean()[2][0] if isinstance(setup.shape_bandwidth, str): if setup.shape_bandwidth == "optimize": optimize_shape_bandwidth( method, self.state, setup.distribution.get_rho_interpolant( discr, self.total_charge), setup.shape_exponent) elif setup.shape_bandwidth == "guess": guess_shape_bandwidth(method, self.state, setup.shape_exponent) else: raise ValueError, "invalid shape bandwidth setting '%s'" % ( setup.shape_bandwidth) else: from pyrticle._internal import PolynomialShapeFunction method.depositor.set_shape_function( self.state, PolynomialShapeFunction( float(setup.shape_bandwidth), method.mesh_data.dimensions, setup.shape_exponent, )) # initial condition --------------------------------------------------- if "no_ic" in setup.debug: self.fields = self.maxwell_op.assemble_eh(discr=discr) else: from pyrticle.cloud import compute_initial_condition self.fields = compute_initial_condition( self.rcon, discr, method, self.state, maxwell_op=self.maxwell_op, potential_bc=setup.potential_bc, force_zero=False) # rhs calculators ----------------------------------------------------- from pyrticle.cloud import \ FieldRhsCalculator, \ FieldToParticleRhsCalculator, \ ParticleRhsCalculator, \ ParticleToFieldRhsCalculator self.f_rhs_calculator = FieldRhsCalculator(self.method, self.maxwell_op) self.p_rhs_calculator = ParticleRhsCalculator(self.method, self.maxwell_op) self.f2p_rhs_calculator = FieldToParticleRhsCalculator( self.method, self.maxwell_op) self.p2f_rhs_calculator = ParticleToFieldRhsCalculator( self.method, self.maxwell_op) # instrumentation setup ----------------------------------------------- self.add_instrumentation(self.logmgr) def add_instrumentation(self, logmgr): from pytools.log import \ add_simulation_quantities, \ add_general_quantities, \ add_run_info, ETA from pyrticle.log import add_particle_quantities, add_field_quantities, \ add_beam_quantities, add_currents setup = self.setup from pyrticle.log import StateObserver self.observer = StateObserver(self.method, self.maxwell_op) self.observer.set_fields_and_state(self.fields, self.state) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) add_particle_quantities(logmgr, self.observer) add_field_quantities(logmgr, self.observer) if setup.beam_axis is not None and setup.beam_diag_axis is not None: add_beam_quantities(logmgr, self.observer, axis=setup.beam_diag_axis, beam_axis=setup.beam_axis) if setup.tube_length is not None: from hedge.tools import unit_vector add_currents( logmgr, self.observer, unit_vector(self.method.dimensions_velocity, setup.beam_axis), setup.tube_length) self.method.add_instrumentation(logmgr, self.observer) self.f_rhs_calculator.add_instrumentation(logmgr) if hasattr(self.stepper, "add_instrumentation"): self.stepper.add_instrumentation(logmgr) mean_beta = self.method.mean_beta(self.state) gamma = self.method.units.gamma_from_beta(mean_beta) logmgr.set_constant("dt", self.dt) logmgr.set_constant("beta", mean_beta) logmgr.set_constant("gamma", gamma) logmgr.set_constant("v", mean_beta * self.units.VACUUM_LIGHT_SPEED()) logmgr.set_constant("Q0", self.total_charge) logmgr.set_constant("n_part_0", setup.nparticles) logmgr.set_constant("pmass", setup.distribution.mean()[3][0]) logmgr.set_constant("chi", setup.chi) logmgr.set_constant("phi_decay", setup.phi_decay) logmgr.set_constant("shape_radius_setup", setup.shape_bandwidth) logmgr.set_constant("shape_radius", self.method.depositor.shape_function.radius) logmgr.set_constant("shape_exponent", self.method.depositor.shape_function.exponent) from pytools.log import IntervalTimer self.vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(self.vis_timer) logmgr.add_quantity(ETA(self.nsteps)) logmgr.add_watches(setup.watch_vars) def inner_run(self): t = 0 setup = self.setup setup.hook_startup(self) vis_order = setup.vis_order if vis_order is None: vis_order = setup.element_order if vis_order != setup.element_order: vis_discr = self.rcon.make_discretization(self.discr.mesh, order=vis_order, debug=setup.dg_debug) from hedge.discretization import Projector vis_proj = Projector(self.discr, vis_discr) else: vis_discr = self.discr def vis_proj(f): return f from hedge.visualization import SiloVisualizer vis = SiloVisualizer(vis_discr) fields = self.fields self.observer.set_fields_and_state(fields, self.state) from hedge.tools import make_obj_array from pyrticle.cloud import TimesteppablePicState def visualize(observer): sub_timer = self.vis_timer.start_sub_timer() import os.path visf = vis.make_file( os.path.join(setup.output_path, setup.vis_pattern % step)) self.method.add_to_vis(vis, visf, observer.state, time=t, step=step) vis.add_data( visf, [(name, vis_proj(fld)) for name, fld in setup.hook_vis_quantities(observer)], time=t, step=step) setup.hook_visualize(self, vis, visf, observer) visf.close() sub_timer.stop().submit() from hedge.timestep.multirate_ab import TwoRateAdamsBashforthTimeStepper if not isinstance(self.stepper, TwoRateAdamsBashforthTimeStepper): def rhs(t, fields_and_state): fields, ts_state = fields_and_state state_f = lambda: ts_state.state fields_f = lambda: fields fields_rhs = (self.f_rhs_calculator(t, fields_f, state_f) + self.p2f_rhs_calculator(t, fields_f, state_f)) state_rhs = (self.p_rhs_calculator(t, fields_f, state_f) + self.f2p_rhs_calculator(t, fields_f, state_f)) return make_obj_array([fields_rhs, state_rhs]) step_args = (self.dt, rhs) else: def add_unwrap(rhs): def unwrapping_rhs(t, fields, ts_state): return rhs(t, fields, lambda: ts_state().state) return unwrapping_rhs step_args = (( add_unwrap(self.f_rhs_calculator), add_unwrap(self.p2f_rhs_calculator), add_unwrap(self.f2p_rhs_calculator), add_unwrap(self.p_rhs_calculator), ), ) y = make_obj_array( [fields, TimesteppablePicState(self.method, self.state)]) del self.state try: from hedge.timestep import times_and_steps step_it = times_and_steps(max_steps=self.nsteps, logmgr=self.logmgr, max_dt_getter=lambda t: self.dt) for step, t, dt in step_it: self.method.upkeep(y[1].state) if step % setup.vis_interval == 0: visualize(self.observer) y = self.stepper(y, t, *step_args) fields, ts_state = y self.observer.set_fields_and_state(fields, ts_state.state) setup.hook_after_step(self, self.observer) finally: vis.close() self.discr.close() self.logmgr.save() setup.hook_when_done(self) def run(self): if self.setup.profile_output_filename is not None: from cProfile import Profile prof = Profile() try: prof.runcall(self.inner_run) finally: from lsprofcalltree import KCacheGrind kg = KCacheGrind(prof) kg.output(open(self.setup.profile_output_filename, "w")) else: self.inner_run()