def test_spatial(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49, 1)) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49, 1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49, 1)) w = pysal.lib.weights.Queen.from_shapefile( pysal.lib.examples.get_path('columbus.shp')) reg = GM_Lag(self.y, X, yd, q, spat_diag=True, w=w) betas = np.array([[5.46344924e+01], [4.13301682e-01], [-5.92637442e-01], [-7.40490883e-03]]) np.testing.assert_allclose(reg.betas, betas, RTOL) vm = np.array([[ 4.45202654e+02, -1.50290275e+01, -6.36557072e+00, -5.71403440e-03 ], [-1.50290275e+01, 5.93124683e-01, 2.19169508e-01, -6.70675916e-03], [ -6.36557072e+00, 2.19169508e-01, 1.06577542e-01, -2.96533875e-03 ], [ -5.71403440e-03, -6.70675916e-03, -2.96533875e-03, 1.15655425e-03 ]]) np.testing.assert_allclose(reg.vm, vm, RTOL) ak_test = np.array([2.52597326, 0.11198567]) np.testing.assert_allclose(reg.ak_test, ak_test, RTOL)
def test_names(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49, 1)) X = SP.csr_matrix(X) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49, 1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49, 1)) w = pysal.lib.weights.Queen.from_shapefile( pysal.lib.examples.get_path('columbus.shp')) gwk = pysal.lib.weights.Kernel.from_shapefile( pysal.lib.examples.get_path('columbus.shp'), k=5, function='triangular', fixed=False) name_x = ['inc'] name_y = 'crime' name_yend = ['crime'] name_q = ['discbd'] name_w = 'queen' name_gwk = 'k=5' name_ds = 'columbus' reg = GM_Lag(self.y, X, yd, q, spat_diag=True, w=w, robust='hac', gwk=gwk, name_x=name_x, name_y=name_y, name_q=name_q, name_w=name_w, name_yend=name_yend, name_gwk=name_gwk, name_ds=name_ds) betas = np.array([[5.46344924e+01], [4.13301682e-01], [-5.92637442e-01], [-7.40490883e-03]]) np.testing.assert_allclose(reg.betas, betas, RTOL) vm = np.array([ [5.70817052e+02, -1.83655385e+01, -8.36602575e+00, 2.37538877e-02], [-1.85224661e+01, 6.53311383e-01, 2.84209566e-01, -6.47694160e-03], [-8.31105622e+00, 2.78772694e-01, 1.38144928e-01, -3.98175246e-03], [2.66662466e-02, -6.23783104e-03, -4.11092891e-03, 1.10936528e-03] ]) np.testing.assert_allclose(reg.vm, vm, RTOL) self.assertListEqual(reg.name_x, ['CONSTANT'] + name_x) name_yend.append('W_crime') self.assertListEqual(reg.name_yend, name_yend) name_q.extend(['W_inc', 'W_discbd']) self.assertListEqual(reg.name_q, name_q) self.assertEqual(reg.name_y, name_y) self.assertEqual(reg.name_w, name_w) self.assertEqual(reg.name_gwk, name_gwk) self.assertEqual(reg.name_ds, name_ds)
def test_lag_q(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49, 1)) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49, 1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49, 1)) reg = GM_Lag(self.y, X, w=self.w, yend=yd, q=q, w_lags=2, lag_q=False) tbetas = np.array([[108.83261383], [-0.48041099], [-1.18950006], [-0.56140186]]) np.testing.assert_allclose(tbetas, reg.betas) dbetas = D.se_betas(reg) se_betas = np.array([58.33203837, 1.09100446, 0.62315167, 0.68088777]) np.testing.assert_allclose(dbetas, se_betas)
def test_init_discbd(self): X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49, 1)) yd = np.array(self.db.by_col("CRIME")) yd = np.reshape(yd, (49, 1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49, 1)) reg = GM_Lag(self.y, X, w=self.w, yend=yd, q=q, w_lags=2) tbetas = np.array([[100.79359082], [-0.50215501], [-1.14881711], [-0.38235022]]) np.testing.assert_allclose(tbetas, reg.betas) dbetas = D.se_betas(reg) se_betas = np.array([53.0829123, 1.02511494, 0.57589064, 0.59891744]) np.testing.assert_allclose(dbetas, se_betas)
def test_init_white_(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T base_gm_lag = GM_Lag(self.y, self.X, w=self.w, w_lags=2, robust='white') tbetas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(base_gm_lag.betas, tbetas) dbetas = D.se_betas(base_gm_lag) se_betas = np.array([20.47077481, 0.50613931, 0.20138425, 0.38028295]) np.testing.assert_allclose(dbetas, se_betas)
def test_n_k(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T reg = GM_Lag(self.y, self.X, w=self.w, w_lags=2, sig2n_k=True) betas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(reg.betas, betas, RTOL) vm = np.array([ [ 3.49389596e+02, -5.36394351e+00, -2.81960968e+00, -4.35694515e+00 ], [-5.36394351e+00, 2.99965892e-01, 6.44054000e-02, -3.13108972e-02], [-2.81960968e+00, 6.44054000e-02, 3.61800155e-02, 1.61095854e-02], [-4.35694515e+00, -3.13108972e-02, 1.61095854e-02, 1.09698285e-01] ]) np.testing.assert_allclose(reg.vm, vm, RTOL)
def test_init_hac_(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T gwk = pysal.lib.weights.Kernel.from_shapefile( pysal.lib.examples.get_path('columbus.shp'), k=15, function='triangular', fixed=False) base_gm_lag = GM_Lag(self.y, self.X, w=self.w, w_lags=2, robust='hac', gwk=gwk) tbetas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(base_gm_lag.betas, tbetas) dbetas = D.se_betas(base_gm_lag) se_betas = np.array([19.08513569, 0.51769543, 0.18244862, 0.35460553]) np.testing.assert_allclose(dbetas, se_betas)
def test___init__(self): X = [] X.append(self.db.by_col("INC")) X.append(self.db.by_col("CRIME")) self.X = np.array(X).T reg = GM_Lag(self.y, self.X, w=self.w, w_lags=2) betas = np.array([[4.53017056e+01], [6.20888617e-01], [-4.80723451e-01], [2.83622122e-02]]) np.testing.assert_allclose(reg.betas, betas, RTOL) e_5 = np.array([[29.28976367], [-6.07439501], [-15.30080685], [-0.41773375], [-5.67197968]]) np.testing.assert_allclose(reg.e_pred[0:5], e_5, RTOL) h_0 = np.array([ 1., 19.531, 15.72598, 18.594, 24.7142675, 13.72216667, 27.82929567 ]) np.testing.assert_allclose(reg.h[0], h_0) hth = np.array([ 49., 704.371999, 1721.312371, 724.7435916, 1707.35412945, 711.31248483, 1729.63201243 ]) np.testing.assert_allclose(reg.hth[0], hth, RTOL) hthi = np.array([ 7.33701328e+00, 2.27764882e-02, 2.18153588e-02, -5.11035447e-02, 1.22515181e-03, -2.38079378e-01, -1.20149133e-01 ]) np.testing.assert_allclose(reg.hthi[0], hthi, RTOL) self.assertEqual(reg.k, 4) self.assertEqual(reg.kstar, 1) np.testing.assert_allclose(reg.mean_y, 38.436224469387746, RTOL) self.assertEqual(reg.n, 49) pfora1a2 = np.array( [80.5588479, -1.06625281, -0.61703759, -1.10071931]) np.testing.assert_allclose(reg.pr2, 0.3551928222612527, RTOL) np.testing.assert_allclose(reg.pr2_e, 0.34763857386174174, RTOL) np.testing.assert_allclose(reg.pfora1a2[0], pfora1a2, RTOL) predy_5 = np.array([[50.87411532], [50.76969931], [41.77223722], [33.44262382], [28.77418036]]) np.testing.assert_allclose(reg.predy[0:5], predy_5, RTOL) predy_e_5 = np.array([[51.17723933], [50.64139601], [41.65080685], [33.61773475], [28.89697968]]) np.testing.assert_allclose(reg.predy_e[0:5], predy_e_5, RTOL) q_5 = np.array([18.594, 24.7142675, 13.72216667, 27.82929567]) np.testing.assert_allclose(reg.q[0], q_5) self.assertEqual(reg.robust, 'unadjusted') np.testing.assert_allclose(reg.sig2n_k, 234.54258763039289, RTOL) np.testing.assert_allclose(reg.sig2n, 215.39625394627919, RTOL) np.testing.assert_allclose(reg.sig2, 215.39625394627919, RTOL) np.testing.assert_allclose(reg.std_y, 18.466069465206047, RTOL) u_5 = np.array([[29.59288768], [-6.20269831], [-15.42223722], [-0.24262282], [-5.54918036]]) np.testing.assert_allclose(reg.u[0:5], u_5, RTOL) np.testing.assert_allclose(reg.utu, 10554.41644336768, RTOL) varb = np.array([ [ 1.48966377e+00, -2.28698061e-02, -1.20217386e-02, -1.85763498e-02 ], [-2.28698061e-02, 1.27893998e-03, 2.74600023e-04, -1.33497705e-04], [-1.20217386e-02, 2.74600023e-04, 1.54257766e-04, 6.86851184e-05], [-1.85763498e-02, -1.33497705e-04, 6.86851184e-05, 4.67711582e-04] ]) np.testing.assert_allclose(reg.varb, varb, RTOL) vm = np.array([ [ 3.20867996e+02, -4.92607057e+00, -2.58943746e+00, -4.00127615e+00 ], [-4.92607057e+00, 2.75478880e-01, 5.91478163e-02, -2.87549056e-02], [-2.58943746e+00, 5.91478163e-02, 3.32265449e-02, 1.47945172e-02], [-4.00127615e+00, -2.87549056e-02, 1.47945172e-02, 1.00743323e-01] ]) np.testing.assert_allclose(reg.vm, vm, RTOL) x_0 = np.array([1., 19.531, 15.72598]) np.testing.assert_allclose(reg.x[0], x_0, RTOL) y_5 = np.array([[80.467003], [44.567001], [26.35], [33.200001], [23.225]]) np.testing.assert_allclose(reg.y[0:5], y_5, RTOL) yend_5 = np.array([[35.4585005], [46.67233467], [45.36475125], [32.81675025], [30.81785714]]) np.testing.assert_allclose(reg.yend[0:5], yend_5, RTOL) z_0 = np.array([1., 19.531, 15.72598, 35.4585005]) np.testing.assert_allclose(reg.z[0], z_0, RTOL) zthhthi = np.array([[ 1.00000000e+00, -2.22044605e-16, -2.22044605e-16, 2.22044605e-16, 4.44089210e-16, 0.00000000e+00, -8.88178420e-16 ], [ 0.00000000e+00, 1.00000000e+00, -3.55271368e-15, 3.55271368e-15, -7.10542736e-15, 7.10542736e-14, 0.00000000e+00 ], [ 1.81898940e-12, 2.84217094e-14, 1.00000000e+00, 0.00000000e+00, -2.84217094e-14, 5.68434189e-14, 5.68434189e-14 ], [ -8.31133940e+00, -3.76104678e-01, -2.07028208e-01, 1.32618931e+00, -8.04284562e-01, 1.30527047e+00, 1.39136816e+00 ]]) # np.testing.assert_allclose(reg.zthhthi, zthhthi RTOL) #another issue with rtol np.testing.assert_array_almost_equal(reg.zthhthi, zthhthi, 7)
q = np.array(q).T reg = TSLS(y, X, yd, q) # create regression object for spatial test db = pysal.lib.io.open(pysal.lib.examples.get_path("columbus.dbf"),'r') y = np.array(db.by_col("HOVAL")) y = np.reshape(y, (49,1)) X = np.array(db.by_col("INC")) X = np.reshape(X, (49,1)) yd = np.array(db.by_col("CRIME")) yd = np.reshape(yd, (49,1)) q = np.array(db.by_col("DISCBD")) q = np.reshape(q, (49,1)) w = pysal.lib.weights.Rook.from_shapefile(pysal.lib.examples.get_path("columbus.shp")) w.transform = 'r' regsp = GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2) class TestTStat(unittest.TestCase): def test_t_stat(self): obs = diagnostics_tsls.t_stat(reg) exp = [(5.8452644704588588, 4.9369075950019865e-07), (0.36760156683572748, 0.71485634049075841), (-1.9946891307832111, 0.052021795864651159)] np.testing.assert_allclose(obs, exp, RTOL) class TestPr2Aspatial(unittest.TestCase): def test_pr2_aspatial(self): obs = diagnostics_tsls.pr2_aspatial(reg) exp = 0.2793613712817381 np.testing.assert_allclose(obs,exp, RTOL)
def test_all_regi_sig2(self): #Artficial: n = 256 x1 = np.random.uniform(-10, 10, (n, 1)) x2 = np.random.uniform(1, 5, (n, 1)) q = x2 + np.random.normal(0, 1, (n, 1)) x = np.hstack((x1, x2)) y = np.dot(np.hstack((np.ones( (n, 1)), x)), np.array([[1], [0.5], [2]])) + np.random.normal( 0, 1, (n, 1)) latt = int(np.sqrt(n)) w = pysal.lib.weights.util.lat2W(latt, latt) w.transform = 'r' regi = [0] * (n // 2) + [1] * (n // 2) model = GM_Lag_Regimes(y, x1, regi, q=q, yend=x2, w=w, regime_lag_sep=True, regime_err_sep=True) w1 = pysal.lib.weights.util.lat2W(latt // 2, latt) w1.transform = 'r' model1 = GM_Lag(y[0:(n // 2)].reshape((n // 2), 1), x1[0:(n // 2)], yend=x2[0:(n // 2)], q=q[0:(n // 2)], w=w1) model2 = GM_Lag(y[(n // 2):n].reshape((n // 2), 1), x1[(n // 2):n], yend=x2[(n // 2):n], q=q[(n // 2):n], w=w1) tbetas = np.vstack((model1.betas, model2.betas)) np.testing.assert_allclose(model.betas, tbetas) vm = np.hstack((model1.vm.diagonal(), model2.vm.diagonal())) np.testing.assert_allclose(model.vm.diagonal(), vm, RTOL) #Columbus: X = np.array(self.db.by_col("INC")) X = np.reshape(X, (49, 1)) yd = np.array(self.db.by_col("HOVAL")) yd = np.reshape(yd, (49, 1)) q = np.array(self.db.by_col("DISCBD")) q = np.reshape(q, (49, 1)) reg = GM_Lag_Regimes(self.y, X, self.regimes, yend=yd, q=q, w=self.w, regime_lag_sep=True, regime_err_sep=True) tbetas = np.array([[42.35827477], [-0.09472413], [-0.68794223], [0.54482537], [32.24228762], [-0.12304063], [-0.46840307], [0.67108156]]) np.testing.assert_allclose(tbetas, reg.betas) vm = np.array([ 200.92894859, 4.56244927, -4.85603079, -2.9755413, 0., 0., 0., 0. ]) np.testing.assert_allclose(reg.vm[0], vm, RTOL) e_3 = np.array([[-1.32209547], [-13.15611199], [-11.62357696]]) np.testing.assert_allclose(reg.e_pred[0:3], e_3, RTOL) u_3 = np.array([[6.99250069], [-7.5665856], [-7.04753328]]) np.testing.assert_allclose(reg.u[0:3], u_3, RTOL) predy_3 = np.array([[8.73347931], [26.3683396], [37.67431428]]) np.testing.assert_allclose(reg.predy[0:3], predy_3, RTOL) predy_e_3 = np.array([[17.04807547], [31.95786599], [42.25035796]]) np.testing.assert_allclose(reg.predy_e[0:3], predy_e_3, RTOL) chow_regi = np.array([[1.51825373e-01, 6.96797034e-01], [3.20105698e-04, 9.85725412e-01], [8.58836996e-02, 7.69476896e-01], [1.01357290e-01, 7.50206873e-01]]) np.testing.assert_allclose(reg.chow.regi, chow_regi, RTOL) np.testing.assert_allclose(reg.chow.joint[0], 0.38417230022512161, RTOL)