def load(fnames, tag=None, sat_id=None, sim_multi_file_right=False, sim_multi_file_left=False, root_date=None, file_date_range=None, malformed_index=False, mangle_file_dates=False): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') sat_id : str or NoneType Instrument satellite ID (accepts '' or a number (i.e., '10'), which specifies the number of data points to include in the test instrument) sim_multi_file_right : boolean Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : boolean Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) root_date : NoneType Optional central date, uses _test_dates if not specified. (default=None) file_date_range : pds.date_range or NoneType Range of dates for files or None, if this optional arguement is not used. Shift actually performed by the init function. (default=None) malformed_index : boolean If True, time index will be non-unique and non-monotonic. mangle_file_dates : bool If True, the loaded file list time index is shifted by 5-minutes. This shift is actually performed by the init function. Returns ------- data : (pds.DataFrame) Testing data meta : (pysat.Meta) Metadataxs """ # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() uts, index, date = mm_test.generate_times(fnames, sat_id, freq='1S') # Specify the date tag locally and determine the desired date range pds_offset = pds.DateOffset(hours=12) if sim_multi_file_right: root_date = root_date or _test_dates[''][''] + pds_offset elif sim_multi_file_left: root_date = root_date or _test_dates[''][''] - pds_offset else: root_date = root_date or _test_dates[''][''] data = pysat.DataFrame(uts, columns=['uts']) # need to create simple orbits here. Have start of first orbit default # to 1 Jan 2009, 00:00 UT. 14.84 orbits per day time_delta = date - root_date data['mlt'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) # do slt, 20 second offset from mlt data['slt'] = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) # create latitude area for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) data['latitude'] = 90.0 * np.cos(angle) # fake orbit number fake_delta = date - (_test_dates[''][''] - pds.DateOffset(years=1)) data['orbit_num'] = mm_test.generate_fake_data(fake_delta.total_seconds(), uts, period=iperiod['lt'], cyclic=False) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.0).astype(int) if tag == 'ascend': data['dummy1'] = [i for i in range(len(data['mlt']))] elif tag == 'descend': data['dummy1'] = [-i for i in range(len(data['mlt']))] elif tag == 'plus10': data['dummy1'] = [i + 10 for i in range(len(data['mlt']))] elif tag == 'fives': data['dummy1'] = [5 for i in range(len(data['mlt']))] elif tag == 'mlt_offset': data['dummy1'] = mlt_int + 5 else: data['dummy1'] = mlt_int data['dummy2'] = long_int data['dummy3'] = mlt_int + long_int * 1000.0 data['dummy4'] = uts data['string_dummy'] = ['test'] * len(data) data['unicode_dummy'] = [u'test'] * len(data) data['int8_dummy'] = np.ones(len(data), dtype=np.int8) data['int16_dummy'] = np.ones(len(data), dtype=np.int16) data['int32_dummy'] = np.ones(len(data), dtype=np.int32) data['int64_dummy'] = np.ones(len(data), dtype=np.int64) if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index data.index.name = 'Epoch' return data, meta.copy()
def load(fnames, tag=None, inst_id=None, malformed_index=False, num_samples=None, test_load_kwarg=None): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') inst_id : str or NoneType Instrument satellite ID (accepts '') malformed_index : bool If True, the time index will be non-unique and non-monotonic. (default=False) num_samples : int Number of samples test_load_kwarg : any or NoneType Testing keyword (default=None) Returns ------- data : pds.DataFrame Testing data meta : pysat.Meta Testing metadata """ # Support keyword testing logger.info(''.join(('test_load_kwarg = ', str(test_load_kwarg)))) # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() if num_samples is None: # Default to 1 day at a frequency of 100S num_samples = 864 # Using 100s frequency for compatibility with seasonal analysis unit tests uts, index, dates = mm_test.generate_times(fnames, num_samples, freq='100S') # seed DataFrame with UT array data = pds.DataFrame(np.mod(uts, 86400.), columns=['uts']) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = dates[0] - dt.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. data['mlt'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) # do slt, 20 second offset from mlt data['slt'] = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) # create latitude signal for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) data['latitude'] = 90.0 * np.cos(angle) # create constant altitude at 400 km alt0 = 400.0 data['altitude'] = alt0 * np.ones(data['latitude'].shape) if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index data.index.name = 'epoch' # higher rate time signal (for scalar >= 2) # this time signal used for 2D profiles associated with each time in main # DataFrame num_profiles = 50 if num_samples >= 50 else num_samples end_date = dates[0] + dt.timedelta(seconds=2 * num_profiles - 1) high_rate_template = pds.date_range(dates[0], end_date, freq='2S') # create a few simulated profiles # DataFrame at each time with mixed variables profiles = [] # DataFrame at each time with numeric variables only alt_profiles = [] # Serie at each time, numeric data only series_profiles = [] # frame indexed by date times frame = pds.DataFrame( { 'density': data.loc[data.index[0:num_profiles], 'mlt'].values.copy(), 'dummy_str': ['test'] * num_profiles, 'dummy_ustr': [u'test'] * num_profiles }, index=data.index[0:num_profiles], columns=['density', 'dummy_str', 'dummy_ustr']) # frame indexed by float dd = np.arange(num_profiles) * 1.2 ff = np.arange(num_profiles) / num_profiles ii = np.arange(num_profiles) * 0.5 frame_alt = pds.DataFrame({ 'density': dd, 'fraction': ff }, index=ii, columns=['density', 'fraction']) # series version of storage series_alt = pds.Series(dd, index=ii, name='series_profiles') for time in data.index: frame.index = high_rate_template + (time - data.index[0]) profiles.append(frame) alt_profiles.append(frame_alt) series_profiles.append(series_alt) # store multiple data types into main frame data['profiles'] = pds.Series(profiles, index=data.index) data['alt_profiles'] = pds.Series(alt_profiles, index=data.index) data['series_profiles'] = pds.Series(series_profiles, index=data.index) # create very limited metadata meta = pysat.Meta() meta['uts'] = {'units': 's', 'long_name': 'Universal Time'} meta['mlt'] = {'units': 'hours', 'long_name': 'Magnetic Local Time'} meta['slt'] = {'units': 'hours', 'long_name': 'Solar Local Time'} meta['longitude'] = {'units': 'degrees', 'long_name': 'Longitude'} meta['latitude'] = {'units': 'degrees', 'long_name': 'Latitude'} meta['altitude'] = {'units': 'km', 'long_name': 'Altitude'} series_profile_meta = pysat.Meta() series_profile_meta['series_profiles'] = {'long_name': 'series'} meta['series_profiles'] = { 'meta': series_profile_meta, 'long_name': 'series' } profile_meta = pysat.Meta() profile_meta['density'] = {'long_name': 'profiles'} profile_meta['dummy_str'] = {'long_name': 'profiles'} profile_meta['dummy_ustr'] = {'long_name': 'profiles'} meta['profiles'] = {'meta': profile_meta, 'long_name': 'profiles'} alt_profile_meta = pysat.Meta() alt_profile_meta['density'] = {'long_name': 'profiles'} alt_profile_meta['fraction'] = {'long_name': 'profiles'} meta['alt_profiles'] = {'meta': alt_profile_meta, 'long_name': 'profiles'} return data, meta
def load(fnames, tag=None, inst_id=None, malformed_index=False, num_samples=None, test_load_kwarg=None): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') inst_id : str or NoneType Instrument satellite ID (accepts '') malformed_index : bool False If True, the time index will be non-unique and non-monotonic. num_samples : int Number of samples test_load_kwarg : any or NoneType Testing keyword (default=None) Returns ------- data : xr.Dataset Testing data meta : pysat.Meta Testing metadata """ # Support keyword testing logger.info(''.join(('test_load_kwarg = ', str(test_load_kwarg)))) # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() if num_samples is None: # Default to 1 day at a frequency of 100S num_samples = 864 # Using 100s frequency for compatibility with seasonal analysis unit tests uts, index, dates = mm_test.generate_times(fnames, num_samples, freq='100S') if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data = xr.Dataset({'uts': ((epoch_name), index)}, coords={epoch_name: index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = dates[0] - dt.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. mlt = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) data['mlt'] = ((epoch_name), mlt) # do slt, 20 second offset from mlt slt = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) data['slt'] = ((epoch_name), slt) # create a fake satellite longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) data['longitude'] = ((epoch_name), longitude) # create fake satellite latitude for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) latitude = 90.0 * np.cos(angle) data['latitude'] = ((epoch_name), latitude) # create constant altitude at 400 km for a satellite that has yet # to experience orbital decay alt0 = 400.0 altitude = alt0 * np.ones(data['latitude'].shape) data['altitude'] = ((epoch_name), altitude) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int).data long_int = (data['longitude'] / 15.).astype(int).data data['dummy1'] = ((epoch_name), mlt_int) data['dummy2'] = ((epoch_name), long_int) data['dummy3'] = ((epoch_name), mlt_int + long_int * 1000.) data['dummy4'] = ((epoch_name), uts) # Add dummy coords data.coords['x'] = (('x'), np.arange(17)) data.coords['y'] = (('y'), np.arange(17)) data.coords['z'] = (('z'), np.arange(15)) # create altitude 'profile' at each location to simulate remote data num = len(data['uts']) data['profiles'] = ((epoch_name, 'profile_height'), data['dummy3'].values[:, np.newaxis] * np.ones( (num, 15))) data.coords['profile_height'] = ('profile_height', np.arange(15)) # profiles that could have different altitude values data['variable_profiles'] = ((epoch_name, 'z'), data['dummy3'].values[:, np.newaxis] * np.ones((num, 15))) data.coords['variable_profile_height'] = ((epoch_name, 'z'), np.arange(15)[np.newaxis, :] * np.ones((num, 15))) # Create fake image type data, projected to lat / lon at some location # from satellite data['images'] = ((epoch_name, 'x', 'y'), data['dummy3'].values[:, np.newaxis, np.newaxis] * np.ones((num, 17, 17))) data.coords['image_lat'] = \ ((epoch_name, 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :] * np.ones((num, 17, 17))) data.coords['image_lon'] = ((epoch_name, 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :] * np.ones((num, 17, 17))) # create very limited metadata meta = pysat.Meta() meta[epoch_name] = {'long_name': 'Datetime Index'} meta['uts'] = {'units': 's', 'long_name': 'Universal Time'} meta['mlt'] = {'units': 'hours', 'long_name': 'Magnetic Local Time'} meta['slt'] = {'units': 'hours', 'long_name': 'Solar Local Time'} meta['longitude'] = {'units': 'degrees', 'long_name': 'Longitude'} meta['latitude'] = {'units': 'degrees', 'long_name': 'Latitude'} meta['altitude'] = {'units': 'km', 'long_name': 'Altitude'} variable_profile_meta = pysat.Meta() variable_profile_meta['variable_profiles'] = {'long_name': 'series'} meta['variable_profiles'] = { 'meta': variable_profile_meta, 'long_name': 'series' } profile_meta = pysat.Meta() profile_meta['density'] = {'long_name': 'profiles'} profile_meta['dummy_str'] = {'long_name': 'profiles'} profile_meta['dummy_ustr'] = {'long_name': 'profiles'} meta['profiles'] = {'meta': profile_meta, 'long_name': 'profiles'} image_meta = pysat.Meta() image_meta['density'] = {'long_name': 'profiles'} image_meta['fraction'] = {'long_name': 'profiles'} meta['images'] = {'meta': image_meta, 'long_name': 'profiles'} for var in data.keys(): if var.find('dummy') >= 0: meta[var] = { 'units': 'none', 'long_name': var, 'notes': 'Dummy variable' } meta['x'] = { 'long_name': 'x-value of image pixel', 'notes': 'Dummy Variable' } meta['y'] = { 'long_name': 'y-value of image pixel', 'notes': 'Dummy Variable' } meta['z'] = { 'long_name': 'z-value of profile height', 'notes': 'Dummy Variable' } meta['image_lat'] = { 'long_name': 'Latitude of image pixel', 'notes': 'Dummy Variable' } meta['image_lon'] = { 'long_name': 'Longitude of image pixel', 'notes': 'Dummy Variable' } meta['profile_height'] = {'long_name': 'profile height'} meta['variable_profile_height'] = {'long_name': 'Variable Profile Height'} return data, meta
def load(fnames, tag=None, sat_id=None, sim_multi_file_right=False, sim_multi_file_left=False, malformed_index=False, **kwargs): """ Loads the test files Parameters ---------- fnames : (list) List of filenames tag : (str or NoneType) Instrument tag (accepts '' or a number (i.e., '10'), which specifies the number of times to include in the test instrument) sat_id : (str or NoneType) Instrument satellite ID (accepts '') sim_multi_file_right : (boolean) Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : (boolean) Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) malformed_index : (boolean) If True, time index will be non-unique and non-monotonic. kwargs : dict Additional unspecified keywords supplied to pysat.Instrument upon instantiation are passed here. Returns ------- data : (xr.Dataset) Testing data meta : (pysat.Meta) Metadataxs """ # create an artifical satellite data set parts = os.path.split(fnames[0])[-1].split('-') yr = int(parts[0]) month = int(parts[1]) day = int(parts[2][0:2]) date = pysat.datetime(yr, month, day) if sim_multi_file_right: root_date = pysat.datetime(2009, 1, 1, 12) data_date = date + pds.DateOffset(hours=12) elif sim_multi_file_left: root_date = pysat.datetime(2008, 12, 31, 12) data_date = date - pds.DateOffset(hours=12) else: root_date = pysat.datetime(2009, 1, 1) data_date = date num = 86400 if sat_id == '' else int(sat_id) num_array = np.arange(num) index = pds.date_range(data_date, data_date + pds.DateOffset(seconds=num - 1), freq='S') if malformed_index: index = index[0:num].tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data = xarray.Dataset({'uts': (('time'), index)}, coords={'time': index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day time_delta = date - root_date mlt = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 24.0]) data['mlt'] = (('time'), mlt) # do slt, 20 second offset from mlt slt = test.generate_fake_data(time_delta.total_seconds() + 20, num_array, period=5820, data_range=[0.0, 24.0]) data['slt'] = (('time'), slt) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = test.generate_fake_data(time_delta.total_seconds(), num_array, period=6240, data_range=[0.0, 360.0]) data['longitude'] = (('time'), longitude) # create latitude area for testing polar orbits angle = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 2.0 * np.pi]) latitude = 90.0 * np.cos(angle) data['latitude'] = (('time'), latitude) # fake orbit number fake_delta = date - pysat.datetime(2008, 1, 1) orbit_num = test.generate_fake_data(fake_delta.total_seconds(), num_array, period=5820, cyclic=False) data['orbit_num'] = (('time'), orbit_num) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.).astype(int) data['dummy1'] = (('time'), mlt_int) data['dummy2'] = (('time'), long_int) data['dummy3'] = (('time'), mlt_int + long_int * 1000.) data['dummy4'] = (('time'), num_array) data['string_dummy'] = (('time'), ['test'] * len(data.indexes['time'])) data['unicode_dummy'] = (('time'), [u'test'] * len(data.indexes['time'])) data['int8_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int8)) data['int16_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int16)) data['int32_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int32)) data['int64_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int64)) return data, meta.copy()
def load(fnames, tag=None, sat_id=None, sim_multi_file_right=False, sim_multi_file_left=False, malformed_index=False, **kwargs): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') sat_id : str or NoneType Instrument satellite ID (accepts '' or a number (i.e., '10'), which specifies the number of data points to include in the test instrument) sim_multi_file_right : boolean Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : boolean Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) malformed_index : boolean If True, time index will be non-unique and non-monotonic. kwargs : dict Additional unspecified keywords supplied to pysat.Instrument upon instantiation are passed here. Returns ------- data : (xr.Dataset) Testing data meta : (pysat.Meta) Metadata """ # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() uts, index, date = mm_test.generate_times(fnames, sat_id=sat_id, freq='1S') if sim_multi_file_right: root_date = pysat.datetime(2009, 1, 1, 12) elif sim_multi_file_left: root_date = pysat.datetime(2008, 12, 31, 12) else: root_date = pysat.datetime(2009, 1, 1) if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]]*3 data = xarray.Dataset({'uts': (('time'), index)}, coords={'time': index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day time_delta = date - root_date mlt = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) data['mlt'] = (('time'), mlt) # do slt, 20 second offset from mlt slt = mm_test.generate_fake_data(time_delta.total_seconds()+20, uts, period=iperiod['lt'], data_range=drange['lt']) data['slt'] = (('time'), slt) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) data['longitude'] = (('time'), longitude) # create latitude area for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) latitude = 90.0 * np.cos(angle) data['latitude'] = (('time'), latitude) # fake orbit number fake_delta = date - pysat.datetime(2008, 1, 1) orbit_num = mm_test.generate_fake_data(fake_delta.total_seconds(), uts, period=iperiod['lt'], cyclic=False) data['orbit_num'] = (('time'), orbit_num) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.).astype(int) data['dummy1'] = (('time'), mlt_int) data['dummy2'] = (('time'), long_int) data['dummy3'] = (('time'), mlt_int + long_int * 1000.) data['dummy4'] = (('time'), uts) data['string_dummy'] = (('time'), ['test'] * len(data.indexes['time'])) data['unicode_dummy'] = (('time'), [u'test'] * len(data.indexes['time'])) data['int8_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int8)) data['int16_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int16)) data['int32_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int32)) data['int64_dummy'] = (('time'), np.array([1] * len(data.indexes['time']), dtype=np.int64)) return data, meta.copy()
def load(fnames, tag=None, sat_id=None, malformed_index=False): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') sat_id : str or NoneType Instrument satellite ID (accepts '' or a number (i.e., '10'), which specifies the number of data points to include in the test instrument) malformed_index : bool If True, the time index will be non-unique and non-monotonic. (default=False) Returns ------- data : pds.DataFrame Testing data meta : pysat.Meta Metadataxs """ # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() # Using 100s frequency for compatibility with seasonal analysis unit tests uts, index, date = mm_test.generate_times(fnames, sat_id, freq='100S') # seed DataFrame with UT array data = pysat.DataFrame(uts, columns=['uts']) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = date - pysat.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. data['mlt'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) # do slt, 20 second offset from mlt data['slt'] = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) # create latitude signal for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) data['latitude'] = 90.0 * np.cos(angle) if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index data.index.name = 'epoch' # higher rate time signal (for scalar >= 2) # this time signal used for 2D profiles associated with each time in main # DataFrame high_rate_template = pds.date_range( date, date + pds.DateOffset(hours=0, minutes=1, seconds=39), freq='2S') # create a few simulated profiles # DataFrame at each time with mixed variables profiles = [] # DataFrame at each time with numeric variables only alt_profiles = [] # Serie at each time, numeric data only series_profiles = [] # frame indexed by date times frame = pds.DataFrame( { 'density': data.loc[data.index[0:50], 'mlt'].values.copy(), 'dummy_str': ['test'] * 50, 'dummy_ustr': [u'test'] * 50 }, index=data.index[0:50], columns=['density', 'dummy_str', 'dummy_ustr']) # frame indexed by float dd = np.arange(50) * 1.2 ff = np.arange(50) / 50. ii = np.arange(50) * 0.5 frame_alt = pds.DataFrame({ 'density': dd, 'fraction': ff }, index=ii, columns=['density', 'fraction']) # series version of storage series_alt = pds.Series(dd, index=ii, name='series_profiles') for time in data.index: frame.index = high_rate_template + (time - data.index[0]) profiles.append(frame) alt_profiles.append(frame_alt) series_profiles.append(series_alt) # store multiple data types into main frame data['profiles'] = pds.Series(profiles, index=data.index) data['alt_profiles'] = pds.Series(alt_profiles, index=data.index) data['series_profiles'] = pds.Series(series_profiles, index=data.index) return data, meta.copy()
def load(fnames, tag=None, sat_id=None, sim_multi_file_right=False, sim_multi_file_left=False, root_date=None, file_date_range=None, malformed_index=False, **kwargs): """ Loads the test files Parameters ---------- fnames : (list) List of filenames tag : (str or NoneType) Instrument tag (accepts '' or a number (i.e., '10'), which specifies the number of times to include in the test instrument) sat_id : (str or NoneType) Instrument satellite ID (accepts '') sim_multi_file_right : (boolean) Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : (boolean) Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) root_date : (NoneType) Optional central date, uses test_dates if not specified. (default=None) file_date_range : (pds.date_range or NoneType) Range of dates for files or None, if this optional arguement is not used (default=None) malformed_index : bool (default=False) If True, time index for simulation will be non-unique and non-monotonic. **kwargs : Additional keywords Additional keyword arguments supplied at pyast.Instrument instantiation are passed here Returns ------- data : (pds.DataFrame) Testing data meta : (pysat.Meta) Metadataxs """ # create an artifical satellite data set parts = os.path.split(fnames[0])[-1].split('-') yr = int(parts[0]) month = int(parts[1]) day = int(parts[2][0:2]) # Specify the date tag locally and determine the desired date range date = pysat.datetime(yr, month, day) pds_offset = pds.DateOffset(hours=12) if sim_multi_file_right: root_date = root_date or test_dates[''][''] + pds_offset data_date = date + pds_offset elif sim_multi_file_left: root_date = root_date or test_dates[''][''] - pds_offset data_date = date - pds_offset else: root_date = root_date or test_dates[''][''] data_date = date # The sat_id can be used to specify the number of indexes to load for # any of the testing objects num = 86400 if sat_id == '' else int(sat_id) num_array = np.arange(num) uts = num_array data = pysat.DataFrame(uts, columns=['uts']) # need to create simple orbits here. Have start of first orbit default # to 1 Jan 2009, 00:00 UT. 14.84 orbits per day time_delta = date - root_date data['mlt'] = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 24.0]) # do slt, 20 second offset from mlt data['slt'] = test.generate_fake_data(time_delta.total_seconds() + 20, num_array, period=5820, data_range=[0.0, 24.0]) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = test.generate_fake_data(time_delta.total_seconds(), num_array, period=6240, data_range=[0.0, 360.0]) # create latitude area for testing polar orbits angle = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 2.0 * np.pi]) data['latitude'] = 90.0 * np.cos(angle) # fake orbit number fake_delta = date - (test_dates[''][''] - pds.DateOffset(years=1)) data['orbit_num'] = test.generate_fake_data(fake_delta.total_seconds(), num_array, period=5820, cyclic=False) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.0).astype(int) if tag == 'ascend': data['dummy1'] = [i for i in range(len(data['mlt']))] elif tag == 'descend': data['dummy1'] = [-i for i in range(len(data['mlt']))] elif tag == 'plus10': data['dummy1'] = [i + 10 for i in range(len(data['mlt']))] elif tag == 'fives': data['dummy1'] = [5 for i in range(len(data['mlt']))] elif tag == 'mlt_offset': data['dummy1'] = mlt_int + 5 else: data['dummy1'] = mlt_int data['dummy2'] = long_int data['dummy3'] = mlt_int + long_int * 1000.0 data['dummy4'] = num_array data['string_dummy'] = ['test'] * len(data) data['unicode_dummy'] = [u'test'] * len(data) data['int8_dummy'] = np.ones(len(data), dtype=np.int8) data['int16_dummy'] = np.ones(len(data), dtype=np.int16) data['int32_dummy'] = np.ones(len(data), dtype=np.int32) data['int64_dummy'] = np.ones(len(data), dtype=np.int64) index = pds.date_range(data_date, data_date + pds.DateOffset(seconds=num - 1), freq='S') if malformed_index: index = index[0:num].tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index[0:num] data.index.name = 'Epoch' return data, meta.copy()
def load(fnames, tag=None, sat_id=None, malformed_index=False): """ Loads the test files Parameters ---------- fnames : (list) List of filenames tag : (str or NoneType) Instrument tag (accepts '' or a number (i.e., '10'), which specifies the number of times to include in the test instrument) sat_id : (str or NoneType) Instrument satellite ID (accepts '') malformed_index : bool (False) If True, the time index will be non-unique and non-monotonic. Returns ------- data : (pds.DataFrame) Testing data meta : (pysat.Meta) Metadataxs """ # create an artifical satellite data set parts = os.path.split(fnames[0])[-1].split('-') yr = int(parts[0]) month = int(parts[1]) day = int(parts[2][0:2]) date = pysat.datetime(yr, month, day) # scalar divisor below used to reduce the number of time samples # covered by the simulation per day. The higher the number the lower # the number of samples (86400/scalar) scalar = 100 num = 86400 / scalar # basic time signal in UTS uts = np.arange(num) * scalar num_array = np.arange(num) * scalar # seed DataFrame with UT array data = pysat.DataFrame(uts, columns=['uts']) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = date - pysat.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. data['mlt'] = test.generate_fake_data(time_delta.total_seconds(), np.arange(num) * scalar, period=5820, data_range=[0.0, 24.0]) # do slt, 20 second offset from mlt data['slt'] = test.generate_fake_data(time_delta.total_seconds() + 20, np.arange(num) * scalar, period=5820, data_range=[0.0, 24.0]) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = test.generate_fake_data(time_delta.total_seconds(), num_array, period=6240, data_range=[0.0, 360.0]) # create latitude signal for testing polar orbits angle = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 2.0 * np.pi]) data['latitude'] = 90.0 * np.cos(angle) # create real UTC time signal index = pds.date_range(date, date + pds.DateOffset(hours=23, minutes=59, seconds=59), freq=str(scalar) + 'S') if malformed_index: index = index[0:num].tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index data.index.name = 'epoch' # higher rate time signal (for scalar >= 2) # this time signal used for 2D profiles associated with each time in main # DataFrame high_rate_template = pds.date_range( date, date + pds.DateOffset(hours=0, minutes=1, seconds=39), freq='2S') # create a few simulated profiles # DataFrame at each time with mixed variables profiles = [] # DataFrame at each time with numeric variables only alt_profiles = [] # Serie at each time, numeric data only series_profiles = [] # frame indexed by date times frame = pds.DataFrame( { 'density': data.loc[data.index[0:50], 'mlt'].values.copy(), 'dummy_str': ['test'] * 50, 'dummy_ustr': [u'test'] * 50 }, index=data.index[0:50], columns=['density', 'dummy_str', 'dummy_ustr']) # frame indexed by float dd = np.arange(50) * 1.2 ff = np.arange(50) / 50. ii = np.arange(50) * 0.5 frame_alt = pds.DataFrame({ 'density': dd, 'fraction': ff }, index=ii, columns=['density', 'fraction']) # series version of storage series_alt = pds.Series(dd, index=ii, name='series_profiles') for time in data.index: frame.index = high_rate_template + (time - data.index[0]) profiles.append(frame) alt_profiles.append(frame_alt) series_profiles.append(series_alt) # store multiple data types into main frame data['profiles'] = pds.Series(profiles, index=data.index) data['alt_profiles'] = pds.Series(alt_profiles, index=data.index) data['series_profiles'] = pds.Series(series_profiles, index=data.index) return data, meta.copy()
def load(fnames, tag=None, inst_id=None, sim_multi_file_right=False, sim_multi_file_left=False, malformed_index=False, num_samples=None, test_load_kwarg=None): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') inst_id : str or NoneType Instrument satellite ID (accepts '') sim_multi_file_right : boolean Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : boolean Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) malformed_index : boolean If True, time index will be non-unique and non-monotonic. num_samples : int Number of samples test_load_kwarg : any or NoneType Testing keyword (default=None) Returns ------- data : xr.Dataset Testing data meta : pysat.Meta Metadata """ # Support keyword testing logger.info(''.join(('test_load_kwarg = ', str(test_load_kwarg)))) # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() if num_samples is None: # Default to 1 day at a frequency of 1S num_samples = 86400 uts, index, dates = mm_test.generate_times(fnames, num_samples, freq='1S') if sim_multi_file_right: root_date = dt.datetime(2009, 1, 1, 12) elif sim_multi_file_left: root_date = dt.datetime(2008, 12, 31, 12) else: root_date = dt.datetime(2009, 1, 1) if malformed_index: index = index.tolist() # Create a nonmonotonic index index[0:3], index[3:6] = index[3:6], index[0:3] # Create a non-unique index index[6:9] = [index[6]] * 3 data = xr.Dataset({'uts': ((epoch_name), index)}, coords={epoch_name: index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day time_delta = dates[0] - root_date mlt = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) data['mlt'] = ((epoch_name), mlt) # do slt, 20 second offset from mlt slt = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) data['slt'] = ((epoch_name), slt) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) data['longitude'] = ((epoch_name), longitude) # create latitude area for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) latitude = 90.0 * np.cos(angle) data['latitude'] = ((epoch_name), latitude) # create constant altitude at 400 km alt0 = 400.0 altitude = alt0 * np.ones(data['latitude'].shape) data['altitude'] = ((epoch_name), altitude) # fake orbit number fake_delta = dates[0] - dt.datetime(2008, 1, 1) orbit_num = mm_test.generate_fake_data(fake_delta.total_seconds(), uts, period=iperiod['lt'], cyclic=False) data['orbit_num'] = ((epoch_name), orbit_num) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int).data long_int = (data['longitude'] / 15.).astype(int).data data['dummy1'] = ((epoch_name), mlt_int) data['dummy2'] = ((epoch_name), long_int) data['dummy3'] = ((epoch_name), mlt_int + long_int * 1000.) data['dummy4'] = ((epoch_name), uts) data['string_dummy'] = ((epoch_name), ['test'] * len(data.indexes[epoch_name])) data['unicode_dummy'] = ((epoch_name), [u'test'] * len(data.indexes[epoch_name])) data['int8_dummy'] = ((epoch_name), np.array([1] * len(data.indexes[epoch_name]), dtype=np.int8)) data['int16_dummy'] = ((epoch_name), np.array([1] * len(data.indexes[epoch_name]), dtype=np.int16)) data['int32_dummy'] = ((epoch_name), np.array([1] * len(data.indexes[epoch_name]), dtype=np.int32)) data['int64_dummy'] = ((epoch_name), np.array([1] * len(data.indexes[epoch_name]), dtype=np.int64)) meta = pysat.Meta() meta['uts'] = {'units': 's', 'long_name': 'Universal Time', 'custom': False} meta[epoch_name] = {'units': 'Milliseconds since 1970-1-1', 'Bin_Location': 0.5, 'notes': 'UTC time at middle of geophysical measurement.', 'desc': 'UTC seconds', } meta['mlt'] = {'units': 'hours', 'long_name': 'Magnetic Local Time', 'desc': 'Magnetic Local Time', 'value_min': 0., 'value_max': 24., 'notes': ''.join(['Magnetic Local Time is the solar local ', 'time of the field line at the location ', 'where the field crosses the magnetic ', 'equator. In this case we just simulate ', '0-24 with a consistent orbital period ', 'and an offset with SLT.'])} meta['slt'] = {'units': 'hours', 'long_name': 'Solar Local Time', 'desc': 'Solar Local Time', 'value_min': 0., 'value_max': 24., 'notes': ''.join(['Solar Local Time is the local time ', '(zenith angle of thee sun) of the given', ' locaiton. Overhead noon, +/- 90 is 6,', ' 18 SLT .'])} meta['orbit_num'] = {'long_name': 'Orbit Number', 'desc': 'Orbit Number', 'value_min': 0., 'value_max': 25000., 'notes': ''.join(['Number of orbits since the start ', 'of the mission. For this ', 'simulation we use the ', 'number of 5820 second periods ', 'since the start, 2008-01-01.'])} meta['longitude'] = {'units': 'degrees', 'long_name': 'Longitude'} meta['latitude'] = {'units': 'degrees', 'long_name': 'Latitude'} meta['altitude'] = {'units': 'km', 'long_name': 'Altitude'} for var in data.keys(): if var.find('dummy') >= 0: meta[var] = {'units': 'none', 'notes': 'Dummy variable'} return data, meta
def load(fnames, tag=None, sat_id=None, malformed_index=False): """ Loads the test files Parameters ---------- fnames : (list) List of filenames tag : (str or NoneType) Instrument tag (accepts '' or a number (i.e., '10'), which specifies the number of times to include in the test instrument) sat_id : (str or NoneType) Instrument satellite ID (accepts '') Returns ------- data : (xr.Dataset) Testing data meta : (pysat.Meta) Metadataxs """ # create an artifical satellite data set parts = os.path.split(fnames[0])[-1].split('-') yr = int(parts[0]) month = int(parts[1]) day = int(parts[2][0:2]) date = pysat.datetime(yr, month, day) # scalar divisor below used to reduce the number of time samples # covered by the simulation per day. The higher the number the lower # the number of samples (86400/scalar) scalar = 1 num = 86400 // scalar num_array = np.arange(num) * scalar # seed DataFrame with UT array index = pds.date_range(date, date + pds.DateOffset(seconds=num - 1), freq='S') if malformed_index: index = index[0:num].tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data = xr.Dataset({'uts': (('time'), index)}, coords={'time': index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = date - pysat.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. mlt = test.generate_fake_data(time_delta.total_seconds(), np.arange(num) * scalar, period=5820, data_range=[0.0, 24.0]) data['mlt'] = (('time'), mlt) # do slt, 20 second offset from mlt slt = test.generate_fake_data(time_delta.total_seconds() + 20, np.arange(num) * scalar, period=5820, data_range=[0.0, 24.0]) data['slt'] = (('time'), slt) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = test.generate_fake_data(time_delta.total_seconds(), num_array, period=6240, data_range=[0.0, 360.0]) data['longitude'] = (('time'), longitude) # create latitude signal for testing polar orbits angle = test.generate_fake_data(time_delta.total_seconds(), num_array, period=5820, data_range=[0.0, 2.0 * np.pi]) latitude = 90.0 * np.cos(angle) data['latitude'] = (('time'), latitude) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.).astype(int) data['dummy1'] = (('time'), mlt_int) data['dummy2'] = (('time'), long_int) data['dummy3'] = (('time'), mlt_int + long_int * 1000.) data['dummy4'] = (('time'), num_array) # create altitude 'profile' at each location data['profiles'] = \ (('time', 'altitude'), data['dummy3'].values[:, np.newaxis] * np.ones((num, 15))) data.coords['altitude'] = ('altitude', np.arange(15)) # profiles that could have different altitude values data['variable_profiles'] = \ (('time', 'z'), data['dummy3'].values[:, np.newaxis] * np.ones((num, 15))) data.coords['altitude2'] = \ (('time', 'z'), np.arange(15)[np.newaxis, :]*np.ones((num, 15))) # basic image simulation data['images'] = \ (('time', 'x', 'y'), data['dummy3'].values[:, np.newaxis, np.newaxis] * np.ones((num, 17, 17))) data.coords['latitude'] = \ (('time', 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :]*np.ones((num, 17, 17))) data.coords['longitude'] = \ (('time', 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :] * np.ones((num, 17, 17))) return data, meta.copy()
def load(fnames, tag=None, sat_id=None, malformed_index=False): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '') sat_id : str or NoneType Instrument satellite ID (accepts '' or a number (i.e., '10'), which specifies the number of data points to include in the test instrument) malformed_index : bool False If True, the time index will be non-unique and non-monotonic. Returns ------- data : xr.Dataset Testing data meta : pysat.Meta Metadataxs """ # create an artifical satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() # Using 100s frequency for compatibility with seasonal analysis unit tests uts, index, date = mm_test.generate_times(fnames, sat_id, freq='100S') if malformed_index: index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]]*3 data = xr.Dataset({'uts': (('time'), index)}, coords={'time': index}) # need to create simple orbits here. Have start of first orbit # at 2009,1, 0 UT. 14.84 orbits per day # figure out how far in time from the root start # use that info to create a signal that is continuous from that start # going to presume there are 5820 seconds per orbit (97 minute period) time_delta = date - pysat.datetime(2009, 1, 1) # mlt runs 0-24 each orbit. mlt = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) data['mlt'] = (('time'), mlt) # do slt, 20 second offset from mlt slt = mm_test.generate_fake_data(time_delta.total_seconds()+20, uts, period=iperiod['lt'], data_range=drange['lt']) data['slt'] = (('time'), slt) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude longitude = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) data['longitude'] = (('time'), longitude) # create latitude signal for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) latitude = 90.0 * np.cos(angle) data['latitude'] = (('time'), latitude) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.).astype(int) data['dummy1'] = (('time'), mlt_int) data['dummy2'] = (('time'), long_int) data['dummy3'] = (('time'), mlt_int + long_int * 1000.) data['dummy4'] = (('time'), uts) # create altitude 'profile' at each location num = len(data['uts']) data['profiles'] = \ (('time', 'altitude'), data['dummy3'].values[:, np.newaxis] * np.ones((num, 15))) data.coords['altitude'] = ('altitude', np.arange(15)) # profiles that could have different altitude values data['variable_profiles'] = \ (('time', 'z'), data['dummy3'].values[:, np.newaxis] * np.ones((num, 15))) data.coords['altitude2'] = \ (('time', 'z'), np.arange(15)[np.newaxis, :]*np.ones((num, 15))) # basic image simulation data['images'] = \ (('time', 'x', 'y'), data['dummy3'].values[:, np.newaxis, np.newaxis] * np.ones((num, 17, 17))) data.coords['latitude'] = \ (('time', 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :]*np.ones((num, 17, 17))) data.coords['longitude'] = \ (('time', 'x', 'y'), np.arange(17)[np.newaxis, np.newaxis, :] * np.ones((num, 17, 17))) return data, meta.copy()
def load(fnames, tag=None, inst_id=None, sim_multi_file_right=False, sim_multi_file_left=False, root_date=None, malformed_index=False, num_samples=None, test_load_kwarg=None): """ Loads the test files Parameters ---------- fnames : list List of filenames tag : str or NoneType Instrument tag (accepts '' or a string to change the behaviour of certain instrument aspects for testing) inst_id : str or NoneType Instrument satellite ID (accepts '') sim_multi_file_right : boolean Adjusts date range to be 12 hours in the future or twelve hours beyond root_date (default=False) sim_multi_file_left : boolean Adjusts date range to be 12 hours in the past or twelve hours before root_date (default=False) root_date : NoneType Optional central date, uses _test_dates if not specified. (default=None) malformed_index : boolean If True, time index will be non-unique and non-monotonic (default=False) num_samples : int Number of samples per day test_load_kwarg : any or NoneType Testing keyword (default=None) Returns ------- data : pds.DataFrame Testing data meta : pysat.Meta Metadata """ # Support keyword testing logger.info(''.join(('test_load_kwarg = ', str(test_load_kwarg)))) # create an artificial satellite data set iperiod = mm_test.define_period() drange = mm_test.define_range() if num_samples is None: # Default to 1 day at a frequency of 1S num_samples = 86400 uts, index, dates = mm_test.generate_times(fnames, num_samples, freq='1S') # Specify the date tag locally and determine the desired date range pds_offset = dt.timedelta(hours=12) if sim_multi_file_right: root_date = root_date or _test_dates[''][''] + pds_offset elif sim_multi_file_left: root_date = root_date or _test_dates[''][''] - pds_offset else: root_date = root_date or _test_dates[''][''] # store UTS, mod 86400 data = pds.DataFrame(np.mod(uts, 86400.), columns=['uts']) # need to create simple orbits here. Have start of first orbit default # to 1 Jan 2009, 00:00 UT. 14.84 orbits per day time_delta = dates[0] - root_date data['mlt'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lt'], data_range=drange['lt']) # do slt, 20 second offset from mlt data['slt'] = mm_test.generate_fake_data(time_delta.total_seconds() + 20, uts, period=iperiod['lt'], data_range=drange['lt']) # create a fake longitude, resets every 6240 seconds # sat moves at 360/5820 deg/s, Earth rotates at 360/86400, takes extra time # to go around full longitude data['longitude'] = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['lon'], data_range=drange['lon']) # create latitude area for testing polar orbits angle = mm_test.generate_fake_data(time_delta.total_seconds(), uts, period=iperiod['angle'], data_range=drange['angle']) data['latitude'] = 90.0 * np.cos(angle) # create constant altitude at 400 km alt0 = 400.0 data['altitude'] = alt0 * np.ones(data['latitude'].shape) # fake orbit number fake_delta = dates[0] - (_test_dates[''][''] - pds.DateOffset(years=1)) data['orbit_num'] = mm_test.generate_fake_data(fake_delta.total_seconds(), uts, period=iperiod['lt'], cyclic=False) # create some fake data to support testing of averaging routines mlt_int = data['mlt'].astype(int) long_int = (data['longitude'] / 15.0).astype(int) data['dummy1'] = mlt_int data['dummy2'] = long_int data['dummy3'] = mlt_int + long_int * 1000.0 data['dummy4'] = uts data['string_dummy'] = ['test'] * len(data) data['unicode_dummy'] = [u'test'] * len(data) data['int8_dummy'] = np.ones(len(data), dtype=np.int8) data['int16_dummy'] = np.ones(len(data), dtype=np.int16) data['int32_dummy'] = np.ones(len(data), dtype=np.int32) data['int64_dummy'] = np.ones(len(data), dtype=np.int64) # Activate for testing malformed_index, and for instrument_test_class if malformed_index or tag == 'non_strict': index = index.tolist() # nonmonotonic index[0:3], index[3:6] = index[3:6], index[0:3] # non unique index[6:9] = [index[6]] * 3 data.index = index data.index.name = 'Epoch' # Set the meta data meta = pysat.Meta() meta['uts'] = { 'units': 's', 'long_name': 'Universal Time', 'custom': False } meta['Epoch'] = { 'units': 'Milliseconds since 1970-1-1', 'Bin_Location': 0.5, 'notes': 'UTC time at middle of geophysical measurement.', 'desc': 'UTC seconds' } meta['mlt'] = { 'units': 'hours', 'long_name': 'Magnetic Local Time', 'desc': 'Magnetic Local Time', 'value_min': 0.0, 'value_max': 24.0, 'notes': ''.join([ 'Magnetic Local Time is the solar local ', 'time of thefield line at the location ', 'where the field crosses the magnetic ', 'equator. In this case we just simulate ', '0-24 with a consistent orbital period ', 'and an offset with SLT.' ]), 'scale': 'linear' } meta['slt'] = { 'units': 'hours', 'long_name': 'Solar Local Time', 'desc': 'Solar Local Time', 'value_min': 0.0, 'value_max': 24.0, 'notes': ''.join([ 'Solar Local Time is the local time ', '(zenith angle of sun) of the given ', 'location. Overhead noon, +/- 90 is 6, ', '18 SLT .' ]) } meta['orbit_num'] = { 'units': '', 'long_name': 'Orbit Number', 'desc': 'Orbit Number', 'value_min': 0.0, 'value_max': 25000.0, 'notes': ''.join([ 'Number of orbits since the start ', 'of the mission. For this ', 'simulation we use the number of ', '5820 second periods since the ', 'start, 2008-01-01.' ]) } meta['longitude'] = {'units': 'degrees', 'long_name': 'Longitude'} meta['latitude'] = {'units': 'degrees', 'long_name': 'Latitude'} meta['altitude'] = {'units': 'km', 'long_name': 'Altitude'} if tag != 'default_meta': for var in data.keys(): if var.find('dummy') >= 0: meta[var] = { 'units': 'none', 'notes': 'Dummy variable for testing' } return data, meta