예제 #1
0
def run_isi_simulation():
    N = 150
    network_params = default_params
    trial_duration = 2 * second
    var = 10
    x1 = 50
    x2 = 100
    isi_times = range(25, 750, 25)
    stim_dur = 100 * ms
    adaptation = np.zeros(len(isi_times))
    for i, isi in enumerate(isi_times):
        print('Testing isi=%dms' % isi)
        stim1_start_time = 1 * second
        stim1_end_time = stim1_start_time + stim_dur

        stim2_start_time = stim1_end_time + isi * ms
        stim2_end_time = stim2_start_time + stim_dur

        same_pop_monitor, same_voxel_monitor = run_pop_code(
            ProbabilisticPopulationCode, N, network_params, [x1, x1],
            [var, var], [stim1_start_time, stim2_start_time],
            [stim1_end_time, stim2_end_time], trial_duration)
        diff_pop_monitor, diff_voxel_monitor = run_pop_code(
            ProbabilisticPopulationCode, N, network_params, [x1, x2],
            [var, var], [stim1_start_time, stim2_start_time],
            [stim1_end_time, stim2_end_time], trial_duration)

        same_y_max = np.max(same_voxel_monitor['y'][0])
        diff_y_max = np.max(diff_voxel_monitor['y'][0])
        adaptation[i] = (diff_y_max - same_y_max) / diff_y_max * 100.0

    data_dir = '../../data/adaptation/isi'
    fig = plt.figure()
    plt.plot(isi_times, adaptation)
    plt.xlabel('ISI (ms)')
    plt.ylabel('Adaptation')
    fname = 'adaptation.isi.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)
예제 #2
0
파일: run.py 프로젝트: jbonaiuto/pySBI
def run_isi_simulation():
    N=150
    network_params=default_params
    trial_duration=2*second
    var=10
    x1=50
    x2=100
    isi_times=range(25,750,25)
    stim_dur=100*ms
    adaptation=np.zeros(len(isi_times))
    for i,isi in enumerate(isi_times):
        print('Testing isi=%dms' % isi)
        stim1_start_time=1*second
        stim1_end_time=stim1_start_time+stim_dur

        stim2_start_time=stim1_end_time+isi*ms
        stim2_end_time=stim2_start_time+stim_dur

        same_pop_monitor,same_voxel_monitor=run_pop_code(ProbabilisticPopulationCode, N, network_params, [x1,x1], [var,var],
            [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],trial_duration)
        diff_pop_monitor,diff_voxel_monitor=run_pop_code(ProbabilisticPopulationCode, N, network_params, [x1,x2], [var,var],
            [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],trial_duration)

        same_y_max=np.max(same_voxel_monitor['y'][0])
        diff_y_max=np.max(diff_voxel_monitor['y'][0])
        adaptation[i]=(diff_y_max-same_y_max)/diff_y_max*100.0

    data_dir='../../data/adaptation/isi'
    fig=plt.figure()
    plt.plot(isi_times,adaptation)
    plt.xlabel('ISI (ms)')
    plt.ylabel('Adaptation')
    fname='adaptation.isi.%s'
    save_to_png(fig, os.path.join(data_dir,fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir,fname % 'eps'))
    plt.close(fig)
예제 #3
0
파일: run.py 프로젝트: jbonaiuto/pySBI
def demo(N, network_params, trial_duration, x1, x2, low_var, high_var, isi, stim_dur):
    stim1_start_time=1*second
    stim1_end_time=stim1_start_time+stim_dur

    stim2_start_time=stim1_end_time+isi
    stim2_end_time=stim2_start_time+stim_dur

    low_var_prob_pop_monitor,low_var_prob_voxel_monitor=run_pop_code(ProbabilisticPopulationCode, N, network_params,
        [x1,x2],[low_var,low_var], [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],trial_duration)

    high_var_prob_pop_monitor,high_var_prob_voxel_monitor=run_pop_code(ProbabilisticPopulationCode, N, network_params,
        [x1,x2],[high_var,high_var], [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],
        trial_duration)

    low_var_samp_pop_monitor,low_var_samp_voxel_monitor=run_pop_code(SamplingPopulationCode, N, network_params, [x1,x2],
        [low_var,low_var], [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],trial_duration)

    high_var_samp_pop_monitor,high_var_samp_voxel_monitor=run_pop_code(SamplingPopulationCode, N, network_params, [x1,x2],
        [high_var,high_var], [stim1_start_time,stim2_start_time], [stim1_end_time,stim2_end_time],trial_duration)

    data_dir='../../data/adaptation/demo'

    fig=plt.figure()
    plt.subplot(411)
    plt.title('Probabilistic population, low variance - rate')
    plt.imshow(low_var_prob_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,.2)
    plt.subplot(412)
    plt.title('Probabilistic population, high variance - rate')
    plt.imshow(high_var_prob_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,.2)
    plt.subplot(413)
    plt.title('Sampling population, low variance - rate')
    plt.imshow(low_var_samp_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,.2)
    plt.subplot(414)
    plt.title('Sampling population, high variance - rate')
    plt.imshow(high_var_samp_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,.2)
    fname='firing_rate.%s'
    save_to_png(fig, os.path.join(data_dir,fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir,fname % 'eps'))
    plt.close(fig)

    fig=plt.figure()
    plt.subplot(411)
    plt.title('Probabilistic population, low variance - efficacy')
    plt.imshow(low_var_prob_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
    plt.subplot(412)
    plt.title('Probabilistic population, high variance - efficacy')
    plt.imshow(high_var_prob_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
    plt.subplot(413)
    plt.title('Sampling population, low variance - efficacy')
    plt.imshow(low_var_samp_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
    plt.subplot(414)
    plt.title('Sampling population, high variance - efficacy')
    plt.imshow(high_var_samp_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
    fname='efficacy.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    fig=plt.figure()
    plt.title('BOLD')
    plt.plot(low_var_prob_voxel_monitor['y'][0],label='prob,low var')
    plt.plot(high_var_prob_voxel_monitor['y'][0],label='prob,high var')
    plt.plot(low_var_samp_voxel_monitor['y'][0],label='samp,low var')
    plt.plot(high_var_samp_voxel_monitor['y'][0],label='samp,high var')
    plt.legend(loc='best')
    fname='bold.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    stim1_mid_time=stim1_start_time+(stim1_end_time-stim1_start_time)/2
    idx1=int(stim1_mid_time/defaultclock.dt)
    stim2_mid_time=stim2_start_time+(stim2_end_time-stim2_start_time)/2
    idx2=int(stim2_mid_time/defaultclock.dt)

    fig=plt.figure()
    plt.title('Probabilistic Population snapshot')
    plt.plot(low_var_prob_pop_monitor['r'][:,idx1],'r', label='low var, stim 1')
    plt.plot(low_var_prob_pop_monitor['r'][:,idx2],'r--', label='low var stim 2')
    plt.plot(high_var_prob_pop_monitor['r'][:,idx1],'b', label='high var, stim 1')
    plt.plot(high_var_prob_pop_monitor['r'][:,idx2],'b--', label='high var stim 2')
    plt.legend(loc='best')
    fname='prob_pop.firing_rate.snapshot.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    fig=plt.figure()
    plt.title('Sampling Population snapshot')
    plt.plot(low_var_samp_pop_monitor['r'][:,idx1],'r', label='low var, stim 1')
    plt.plot(low_var_samp_pop_monitor['r'][:,idx2],'r--', label='low var, stim 2')
    plt.plot(high_var_samp_pop_monitor['r'][:,idx1],'b', label='high var, stim 1')
    plt.plot(high_var_samp_pop_monitor['r'][:,idx2],'b--', label='high var, stim 2')
    plt.legend(loc='best')
    fname='samp_pop.firing_rate.snapshot.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)
예제 #4
0
파일: run.py 프로젝트: jbonaiuto/pySBI
def test_simulation(design):
    N=150
    network_params=default_params
    sim_params=rapid_design_params
    network_params.tau_ar=100*ms
    if design=='long':
        network_params.tau_a=5*second
        sim_params=long_design_params
    var=10
    x1=50
    x2=100
    stim1_start_time=1*second
    stim1_end_time=stim1_start_time+sim_params.stim_dur
    stim2_start_time=stim1_end_time+sim_params.isi
    stim2_end_time=stim2_start_time+sim_params.stim_dur

    same_pop_monitor,same_voxel_monitor,same_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
        [Stimulus(x1,var,stim1_start_time,stim1_end_time),
         Stimulus(x1,var,stim2_start_time,stim2_end_time)],
        sim_params.trial_duration)
    diff_pop_monitor,diff_voxel_monitor,diff_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
        [Stimulus(x1,var,stim1_start_time,stim1_end_time),
         Stimulus(x2,var,stim2_start_time,stim2_end_time)],
        sim_params.trial_duration)
#    single_pop_monitor,single_voxel_monitor,single_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
#        [Stimulus(x1,var,stim1_start_time,stim1_end_time)],
#        sim_params.trial_duration)

    data_dir='../../data/adaptation/adaptation_test'
    fig=plt.figure()
    #plt.subplot(311)
    plt.subplot(211)
    plt.title('Same')
    plt.imshow(same_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    #plt.subplot(312)
    plt.subplot(212)
    plt.title('Different')
    plt.imshow(diff_pop_monitor['r'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
#    plt.subplot(313)
#    plt.title('Single')
#    plt.imshow(single_pop_monitor['r'][:],aspect='auto')
#    plt.xlabel('time')
#    plt.ylabel('neuron')
#    plt.colorbar()
    fname='%s.firing_rate' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

    fig=plt.figure()
    #plt.subplot(311)
    plt.subplot(211)
    plt.title('Same')
    plt.imshow(same_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
    #plt.subplot(312)
    plt.subplot(212)
    plt.title('Different')
    plt.imshow(diff_pop_monitor['e'][:],aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0,1)
#    plt.subplot(313)
#    plt.title('Single')
#    plt.imshow(single_pop_monitor['e'][:],aspect='auto')
#    plt.xlabel('time')
#    plt.ylabel('neuron')
#    plt.colorbar()
#    plt.clim(0,1)
    fname='%s.efficacy' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

    fig=plt.figure()
    plt.title('BOLD')
    plt.plot(same_voxel_monitor['y'][0],label='same')
    plt.plot(diff_voxel_monitor['y'][0],label='different')
    #plt.plot(single_voxel_monitor['y'][0],label='single')
    plt.legend(loc='best')
    fname='%s.bold' % design
    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

#    fig=plt.figure()
#    plt.plot(same_pop_monitor['total_e'][0],label='same')
#    plt.plot(diff_pop_monitor['total_e'][0],label='different')
#    #plt.plot(single_pop_monitor['total_e'][0],label='single')
#    plt.legend(loc='best')
#    fname='%s.total_e' % design
#    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
#    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
#    plt.close(fig)
#
#    fig=plt.figure()
#    plt.plot(same_pop_monitor['total_r'][0],label='same')
#    plt.plot(diff_pop_monitor['total_r'][0],label='different')
#    #plt.plot(single_pop_monitor['total_r'][0],label='single')
#    plt.legend(loc='best')
#    fname='%s.total_r' % design
#    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
#    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
#    plt.close(fig)

    fig=plt.figure()
    plt.plot(same_voxel_monitor['G_total'][0][0:20000],label='same')
    plt.plot(diff_voxel_monitor['G_total'][0][0:20000],label='different')
    #plt.plot(single_voxel_monitor['G_total'][0][0:100000],label='single')
    plt.legend(loc='best')
    fname='%s.g_total' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)
예제 #5
0
파일: run.py 프로젝트: jbonaiuto/pySBI
def adaptation_simulation(design, baseline, pop_class, N, network_params, sim_params, stim1_mean, stim2_mean, stim1_var,
                          stim2_var, data_dir, edesc):
    # Compute stimulus start and end times
    stim1_start_time=1*second
    stim1_end_time=stim1_start_time+sim_params.stim_dur

    stim2_start_time=stim1_end_time+sim_params.isi
    stim2_end_time=stim2_start_time+sim_params.stim_dur

    pop_monitor,voxel_monitor,y_max=run_pop_code(pop_class, N, network_params,
        [Stimulus(stim1_mean, stim1_var, stim1_start_time, stim1_end_time),
         Stimulus(stim2_mean, stim2_var, stim2_start_time, stim2_end_time)],
        sim_params.trial_duration)

    if baseline=='repeated':
        baseline_pop_monitor,baseline_voxel_monitor,baseline_y_max=run_pop_code(pop_class, N, network_params,
            [Stimulus(stim1_mean,stim1_var,stim1_start_time,stim1_end_time),
             Stimulus(stim1_mean,stim1_var,stim2_start_time,stim2_end_time)],
            sim_params.trial_duration)
        adaptation=(y_max-baseline_y_max)/baseline_y_max
    elif baseline=='single':
        baseline_pop_monitor,baseline_voxel_monitor,baseline_y_max=run_pop_code(pop_class, N, network_params,
            [Stimulus(stim2_mean, stim2_var, stim1_start_time, stim1_end_time)],
            rapid_design_params.trial_duration)
        adaptation=(y_max-baseline_y_max)/baseline_y_max

    fig=plt.figure()
    plt.plot(voxel_monitor['y'][0], 'b', label='test')
    plt.plot(baseline_voxel_monitor['y'][0], 'r', label='baseline')
    plt.legend(loc='best')
    fname='%s.baseline-%s.%s.%s.bold' % (design,baseline,edesc,pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

    fig=plt.figure()
    plt.subplot(211)
    plt.title('test')
    plt.imshow(pop_monitor['e'][:],aspect='auto')
    plt.clim(0,1)
    plt.colorbar()
    plt.subplot(212)
    plt.title('baseline')
    plt.imshow(baseline_pop_monitor['e'][:],aspect='auto')
    plt.clim(0,1)
    plt.colorbar()
    fname='%s.baseline-%s.%s.%s.e' % (design,baseline,edesc,pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

#    fig=plt.figure()
#    plt.plot(pop_monitor['total_e'][0],'b',label='test')
#    plt.plot(baseline_pop_monitor['total_e'][0],'r',label='baseline')
#    plt.legend(loc='best')
#    fname='%s.baseline-%s.%s.%s.total_e' % (design,baseline,edesc,pop_class.__name__)
#    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
#    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
#    plt.close(fig)
#
#    fig=plt.figure()
#    plt.plot(pop_monitor['total_r'][0],'b',label='test')
#    plt.plot(baseline_pop_monitor['total_r'][0],'r',label='baseline')
#    plt.legend(loc='best')
#    fname='%s.baseline-%s.%s.%s.total_r' % (design,baseline,edesc,pop_class.__name__)
#    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
#    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
#    plt.close(fig)

    fig=plt.figure()
    plt.plot(voxel_monitor['G_total'][0][0:100000],'b',label='test')
    plt.plot(baseline_voxel_monitor['G_total'][0][0:100000],'r',label='baseline')
    plt.legend(loc='best')
    fname='%s.baseline-%s.%s.%s.g_total' % (design,baseline,edesc,pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)

    return adaptation
예제 #6
0
파일: run.py 프로젝트: jbonaiuto/pySBI
def run_repeated_test():
    N=150
    # Set trial duration, inter-stimulus-interval, and stimulus duration depending on design
    network_params=default_params
    sim_params=rapid_design_params

    # Compute stimulus start and end times
    stim1_start_time=1*second
    stim1_end_time=stim1_start_time+sim_params.stim_dur

    stim2_start_time=stim1_end_time+sim_params.isi
    stim2_end_time=stim2_start_time+sim_params.stim_dur

    x_delta_iter=5
    # If baseline is single stimulus - need to test x_delta=0
    x_delta_range=np.array(range(0,int(N/3),x_delta_iter))

    # High and low variance examples
    low_var=5
    x=int(N/3)

    prob_combined_y_max=np.zeros(len(x_delta_range))
    prob_repeated_y_max=np.zeros(len(x_delta_range))
    samp_combined_y_max=np.zeros(len(x_delta_range))
    samp_repeated_y_max=np.zeros(len(x_delta_range))
    for i,x_delta in enumerate(x_delta_range):
        print('x_delta=%d' % x_delta)

        pop_monitor,voxel_monitor,prob_repeated_y_max[i]=run_pop_code(ProbabilisticPopulationCode, N, network_params,
            [Stimulus(x,low_var,stim1_start_time,stim1_end_time),
             Stimulus(x+x_delta,low_var,stim2_start_time,stim2_end_time)],
            sim_params.trial_duration)
        pop_monitor,voxel_monitor,prob_first_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
            [Stimulus(x, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        pop_monitor,voxel_monitor,prob_second_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
            [Stimulus(x+x_delta, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        prob_combined_y_max[i]=prob_first_y_max+prob_second_y_max

        pop_monitor,voxel_monitor,samp_repeated_y_max[i]=run_pop_code(SamplingPopulationCode, N, network_params,
            [Stimulus(x,low_var,stim1_start_time,stim1_end_time),
             Stimulus(x+x_delta,low_var,stim2_start_time,stim2_end_time)],
            sim_params.trial_duration)
        pop_monitor,voxel_monitor,samp_first_y_max=run_pop_code(SamplingPopulationCode, N, network_params,
            [Stimulus(x, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        pop_monitor,voxel_monitor,samp_second_y_max=run_pop_code(SamplingPopulationCode, N, network_params,
            [Stimulus(x+x_delta, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        samp_combined_y_max[i]=samp_first_y_max+samp_second_y_max

    data_dir='../../data/adaptation/repeated_test/'

    fig=plt.figure()
    plt.plot(x_delta_range,prob_combined_y_max-prob_repeated_y_max,'r',label='prob')
    plt.plot(x_delta_range,samp_combined_y_max-samp_repeated_y_max,'b',label='samp')
    plt.legend(loc='best')
    fname='repeated_test'
    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    plt.close(fig)
예제 #7
0
def demo(N, network_params, trial_duration, x1, x2, low_var, high_var, isi,
         stim_dur):
    stim1_start_time = 1 * second
    stim1_end_time = stim1_start_time + stim_dur

    stim2_start_time = stim1_end_time + isi
    stim2_end_time = stim2_start_time + stim_dur

    low_var_prob_pop_monitor, low_var_prob_voxel_monitor = run_pop_code(
        ProbabilisticPopulationCode, N, network_params, [x1, x2],
        [low_var, low_var], [stim1_start_time, stim2_start_time],
        [stim1_end_time, stim2_end_time], trial_duration)

    high_var_prob_pop_monitor, high_var_prob_voxel_monitor = run_pop_code(
        ProbabilisticPopulationCode, N, network_params, [x1, x2],
        [high_var, high_var], [stim1_start_time, stim2_start_time],
        [stim1_end_time, stim2_end_time], trial_duration)

    low_var_samp_pop_monitor, low_var_samp_voxel_monitor = run_pop_code(
        SamplingPopulationCode, N, network_params, [x1, x2],
        [low_var, low_var], [stim1_start_time, stim2_start_time],
        [stim1_end_time, stim2_end_time], trial_duration)

    high_var_samp_pop_monitor, high_var_samp_voxel_monitor = run_pop_code(
        SamplingPopulationCode, N, network_params, [x1, x2],
        [high_var, high_var], [stim1_start_time, stim2_start_time],
        [stim1_end_time, stim2_end_time], trial_duration)

    data_dir = '../../data/adaptation/demo'

    fig = plt.figure()
    plt.subplot(411)
    plt.title('Probabilistic population, low variance - rate')
    plt.imshow(low_var_prob_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, .2)
    plt.subplot(412)
    plt.title('Probabilistic population, high variance - rate')
    plt.imshow(high_var_prob_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, .2)
    plt.subplot(413)
    plt.title('Sampling population, low variance - rate')
    plt.imshow(low_var_samp_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, .2)
    plt.subplot(414)
    plt.title('Sampling population, high variance - rate')
    plt.imshow(high_var_samp_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, .2)
    fname = 'firing_rate.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    fig = plt.figure()
    plt.subplot(411)
    plt.title('Probabilistic population, low variance - efficacy')
    plt.imshow(low_var_prob_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    plt.subplot(412)
    plt.title('Probabilistic population, high variance - efficacy')
    plt.imshow(high_var_prob_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    plt.subplot(413)
    plt.title('Sampling population, low variance - efficacy')
    plt.imshow(low_var_samp_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    plt.subplot(414)
    plt.title('Sampling population, high variance - efficacy')
    plt.imshow(high_var_samp_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    fname = 'efficacy.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    fig = plt.figure()
    plt.title('BOLD')
    plt.plot(low_var_prob_voxel_monitor['y'][0], label='prob,low var')
    plt.plot(high_var_prob_voxel_monitor['y'][0], label='prob,high var')
    plt.plot(low_var_samp_voxel_monitor['y'][0], label='samp,low var')
    plt.plot(high_var_samp_voxel_monitor['y'][0], label='samp,high var')
    plt.legend(loc='best')
    fname = 'bold.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    stim1_mid_time = stim1_start_time + (stim1_end_time - stim1_start_time) / 2
    idx1 = int(stim1_mid_time / defaultclock.dt)
    stim2_mid_time = stim2_start_time + (stim2_end_time - stim2_start_time) / 2
    idx2 = int(stim2_mid_time / defaultclock.dt)

    fig = plt.figure()
    plt.title('Probabilistic Population snapshot')
    plt.plot(low_var_prob_pop_monitor['r'][:, idx1],
             'r',
             label='low var, stim 1')
    plt.plot(low_var_prob_pop_monitor['r'][:, idx2],
             'r--',
             label='low var stim 2')
    plt.plot(high_var_prob_pop_monitor['r'][:, idx1],
             'b',
             label='high var, stim 1')
    plt.plot(high_var_prob_pop_monitor['r'][:, idx2],
             'b--',
             label='high var stim 2')
    plt.legend(loc='best')
    fname = 'prob_pop.firing_rate.snapshot.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)

    fig = plt.figure()
    plt.title('Sampling Population snapshot')
    plt.plot(low_var_samp_pop_monitor['r'][:, idx1],
             'r',
             label='low var, stim 1')
    plt.plot(low_var_samp_pop_monitor['r'][:, idx2],
             'r--',
             label='low var, stim 2')
    plt.plot(high_var_samp_pop_monitor['r'][:, idx1],
             'b',
             label='high var, stim 1')
    plt.plot(high_var_samp_pop_monitor['r'][:, idx2],
             'b--',
             label='high var, stim 2')
    plt.legend(loc='best')
    fname = 'samp_pop.firing_rate.snapshot.%s'
    save_to_png(fig, os.path.join(data_dir, fname % 'png'))
    save_to_eps(fig, os.path.join(data_dir, fname % 'eps'))
    plt.close(fig)
예제 #8
0
def test_simulation(design):
    N = 150
    network_params = default_params
    sim_params = rapid_design_params
    network_params.tau_ar = 100 * ms
    if design == 'long':
        network_params.tau_a = 5 * second
        sim_params = long_design_params
    var = 10
    x1 = 50
    x2 = 100
    stim1_start_time = 1 * second
    stim1_end_time = stim1_start_time + sim_params.stim_dur
    stim2_start_time = stim1_end_time + sim_params.isi
    stim2_end_time = stim2_start_time + sim_params.stim_dur

    same_pop_monitor, same_voxel_monitor, same_y_max = run_pop_code(
        ProbabilisticPopulationCode, N, network_params, [
            Stimulus(x1, var, stim1_start_time, stim1_end_time),
            Stimulus(x1, var, stim2_start_time, stim2_end_time)
        ], sim_params.trial_duration)
    diff_pop_monitor, diff_voxel_monitor, diff_y_max = run_pop_code(
        ProbabilisticPopulationCode, N, network_params, [
            Stimulus(x1, var, stim1_start_time, stim1_end_time),
            Stimulus(x2, var, stim2_start_time, stim2_end_time)
        ], sim_params.trial_duration)
    #    single_pop_monitor,single_voxel_monitor,single_y_max=run_pop_code(ProbabilisticPopulationCode, N, network_params,
    #        [Stimulus(x1,var,stim1_start_time,stim1_end_time)],
    #        sim_params.trial_duration)

    data_dir = '../../data/adaptation/adaptation_test'
    fig = plt.figure()
    #plt.subplot(311)
    plt.subplot(211)
    plt.title('Same')
    plt.imshow(same_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    #plt.subplot(312)
    plt.subplot(212)
    plt.title('Different')
    plt.imshow(diff_pop_monitor['r'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    #    plt.subplot(313)
    #    plt.title('Single')
    #    plt.imshow(single_pop_monitor['r'][:],aspect='auto')
    #    plt.xlabel('time')
    #    plt.ylabel('neuron')
    #    plt.colorbar()
    fname = '%s.firing_rate' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    fig = plt.figure()
    #plt.subplot(311)
    plt.subplot(211)
    plt.title('Same')
    plt.imshow(same_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    #plt.subplot(312)
    plt.subplot(212)
    plt.title('Different')
    plt.imshow(diff_pop_monitor['e'][:], aspect='auto')
    plt.xlabel('time')
    plt.ylabel('neuron')
    plt.colorbar()
    plt.clim(0, 1)
    #    plt.subplot(313)
    #    plt.title('Single')
    #    plt.imshow(single_pop_monitor['e'][:],aspect='auto')
    #    plt.xlabel('time')
    #    plt.ylabel('neuron')
    #    plt.colorbar()
    #    plt.clim(0,1)
    fname = '%s.efficacy' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    fig = plt.figure()
    plt.title('BOLD')
    plt.plot(same_voxel_monitor['y'][0], label='same')
    plt.plot(diff_voxel_monitor['y'][0], label='different')
    #plt.plot(single_voxel_monitor['y'][0],label='single')
    plt.legend(loc='best')
    fname = '%s.bold' % design
    save_to_png(fig, os.path.join(data_dir, '%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    #    fig=plt.figure()
    #    plt.plot(same_pop_monitor['total_e'][0],label='same')
    #    plt.plot(diff_pop_monitor['total_e'][0],label='different')
    #    #plt.plot(single_pop_monitor['total_e'][0],label='single')
    #    plt.legend(loc='best')
    #    fname='%s.total_e' % design
    #    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    #    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    #    plt.close(fig)
    #
    #    fig=plt.figure()
    #    plt.plot(same_pop_monitor['total_r'][0],label='same')
    #    plt.plot(diff_pop_monitor['total_r'][0],label='different')
    #    #plt.plot(single_pop_monitor['total_r'][0],label='single')
    #    plt.legend(loc='best')
    #    fname='%s.total_r' % design
    #    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    #    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    #    plt.close(fig)

    fig = plt.figure()
    plt.plot(same_voxel_monitor['G_total'][0][0:20000], label='same')
    plt.plot(diff_voxel_monitor['G_total'][0][0:20000], label='different')
    #plt.plot(single_voxel_monitor['G_total'][0][0:100000],label='single')
    plt.legend(loc='best')
    fname = '%s.g_total' % design
    #save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)
예제 #9
0
def adaptation_simulation(design, baseline, pop_class, N, network_params,
                          sim_params, stim1_mean, stim2_mean, stim1_var,
                          stim2_var, data_dir, edesc):
    # Compute stimulus start and end times
    stim1_start_time = 1 * second
    stim1_end_time = stim1_start_time + sim_params.stim_dur

    stim2_start_time = stim1_end_time + sim_params.isi
    stim2_end_time = stim2_start_time + sim_params.stim_dur

    pop_monitor, voxel_monitor, y_max = run_pop_code(
        pop_class, N, network_params, [
            Stimulus(stim1_mean, stim1_var, stim1_start_time, stim1_end_time),
            Stimulus(stim2_mean, stim2_var, stim2_start_time, stim2_end_time)
        ], sim_params.trial_duration)

    if baseline == 'repeated':
        baseline_pop_monitor, baseline_voxel_monitor, baseline_y_max = run_pop_code(
            pop_class, N, network_params, [
                Stimulus(stim1_mean, stim1_var, stim1_start_time,
                         stim1_end_time),
                Stimulus(stim1_mean, stim1_var, stim2_start_time,
                         stim2_end_time)
            ], sim_params.trial_duration)
        adaptation = (y_max - baseline_y_max) / baseline_y_max
    elif baseline == 'single':
        baseline_pop_monitor, baseline_voxel_monitor, baseline_y_max = run_pop_code(
            pop_class, N, network_params, [
                Stimulus(stim2_mean, stim2_var, stim1_start_time,
                         stim1_end_time)
            ], rapid_design_params.trial_duration)
        adaptation = (y_max - baseline_y_max) / baseline_y_max

    fig = plt.figure()
    plt.plot(voxel_monitor['y'][0], 'b', label='test')
    plt.plot(baseline_voxel_monitor['y'][0], 'r', label='baseline')
    plt.legend(loc='best')
    fname = '%s.baseline-%s.%s.%s.bold' % (design, baseline, edesc,
                                           pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir, '%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    fig = plt.figure()
    plt.subplot(211)
    plt.title('test')
    plt.imshow(pop_monitor['e'][:], aspect='auto')
    plt.clim(0, 1)
    plt.colorbar()
    plt.subplot(212)
    plt.title('baseline')
    plt.imshow(baseline_pop_monitor['e'][:], aspect='auto')
    plt.clim(0, 1)
    plt.colorbar()
    fname = '%s.baseline-%s.%s.%s.e' % (design, baseline, edesc,
                                        pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir, '%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    #    fig=plt.figure()
    #    plt.plot(pop_monitor['total_e'][0],'b',label='test')
    #    plt.plot(baseline_pop_monitor['total_e'][0],'r',label='baseline')
    #    plt.legend(loc='best')
    #    fname='%s.baseline-%s.%s.%s.total_e' % (design,baseline,edesc,pop_class.__name__)
    #    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    #    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    #    plt.close(fig)
    #
    #    fig=plt.figure()
    #    plt.plot(pop_monitor['total_r'][0],'b',label='test')
    #    plt.plot(baseline_pop_monitor['total_r'][0],'r',label='baseline')
    #    plt.legend(loc='best')
    #    fname='%s.baseline-%s.%s.%s.total_r' % (design,baseline,edesc,pop_class.__name__)
    #    save_to_png(fig, os.path.join(data_dir,'%s.png' % fname))
    #    save_to_eps(fig, os.path.join(data_dir,'%s.eps' % fname))
    #    plt.close(fig)

    fig = plt.figure()
    plt.plot(voxel_monitor['G_total'][0][0:100000], 'b', label='test')
    plt.plot(baseline_voxel_monitor['G_total'][0][0:100000],
             'r',
             label='baseline')
    plt.legend(loc='best')
    fname = '%s.baseline-%s.%s.%s.g_total' % (design, baseline, edesc,
                                              pop_class.__name__)
    save_to_png(fig, os.path.join(data_dir, '%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)

    return adaptation
예제 #10
0
def run_repeated_test():
    N = 150
    # Set trial duration, inter-stimulus-interval, and stimulus duration depending on design
    network_params = default_params
    sim_params = rapid_design_params

    # Compute stimulus start and end times
    stim1_start_time = 1 * second
    stim1_end_time = stim1_start_time + sim_params.stim_dur

    stim2_start_time = stim1_end_time + sim_params.isi
    stim2_end_time = stim2_start_time + sim_params.stim_dur

    x_delta_iter = 5
    # If baseline is single stimulus - need to test x_delta=0
    x_delta_range = np.array(range(0, int(N / 3), x_delta_iter))

    # High and low variance examples
    low_var = 5
    x = int(N / 3)

    prob_combined_y_max = np.zeros(len(x_delta_range))
    prob_repeated_y_max = np.zeros(len(x_delta_range))
    samp_combined_y_max = np.zeros(len(x_delta_range))
    samp_repeated_y_max = np.zeros(len(x_delta_range))
    for i, x_delta in enumerate(x_delta_range):
        print('x_delta=%d' % x_delta)

        pop_monitor, voxel_monitor, prob_repeated_y_max[i] = run_pop_code(
            ProbabilisticPopulationCode, N, network_params, [
                Stimulus(x, low_var, stim1_start_time, stim1_end_time),
                Stimulus(x + x_delta, low_var, stim2_start_time,
                         stim2_end_time)
            ], sim_params.trial_duration)
        pop_monitor, voxel_monitor, prob_first_y_max = run_pop_code(
            ProbabilisticPopulationCode, N, network_params,
            [Stimulus(x, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        pop_monitor, voxel_monitor, prob_second_y_max = run_pop_code(
            ProbabilisticPopulationCode, N, network_params,
            [Stimulus(x + x_delta, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        prob_combined_y_max[i] = prob_first_y_max + prob_second_y_max

        pop_monitor, voxel_monitor, samp_repeated_y_max[i] = run_pop_code(
            SamplingPopulationCode, N, network_params, [
                Stimulus(x, low_var, stim1_start_time, stim1_end_time),
                Stimulus(x + x_delta, low_var, stim2_start_time,
                         stim2_end_time)
            ], sim_params.trial_duration)
        pop_monitor, voxel_monitor, samp_first_y_max = run_pop_code(
            SamplingPopulationCode, N, network_params,
            [Stimulus(x, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        pop_monitor, voxel_monitor, samp_second_y_max = run_pop_code(
            SamplingPopulationCode, N, network_params,
            [Stimulus(x + x_delta, low_var, stim1_start_time, stim1_end_time)],
            sim_params.trial_duration)
        samp_combined_y_max[i] = samp_first_y_max + samp_second_y_max

    data_dir = '../../data/adaptation/repeated_test/'

    fig = plt.figure()
    plt.plot(x_delta_range,
             prob_combined_y_max - prob_repeated_y_max,
             'r',
             label='prob')
    plt.plot(x_delta_range,
             samp_combined_y_max - samp_repeated_y_max,
             'b',
             label='samp')
    plt.legend(loc='best')
    fname = 'repeated_test'
    save_to_png(fig, os.path.join(data_dir, '%s.png' % fname))
    save_to_eps(fig, os.path.join(data_dir, '%s.eps' % fname))
    plt.close(fig)