예제 #1
0
 def _estimateDensityByConfig(self, dtype, samples, config={}):
     if dtype == "kde":
         # compute bounds of samples
         bounds = np.ndarray((1, 2))
         bounds[:, 0] = np.min(samples)
         bounds[:, 1] = np.max(samples)
         return KDEDist(samples,
                        bandwidthOptimizationType=BandwidthOptimizationType_SILVERMANSRULE,
                        bounds=bounds)
     elif dtype == "sgde":
         # compute bounds of samples
         bounds = np.ndarray((1, 2))
         bounds[:, 0] = np.min(samples)
         bounds[:, 1] = np.max(samples)
         return SGDEdist.byLearnerSGDEConfig(samples, bounds, config=config)
     else:
         raise AttributeError("density estimation type %s is not known. Select one in [gaussianKDE, sgde]")
예제 #2
0
    def test2DCovarianceMatrix(self):
        # prepare data
        np.random.seed(1234567)
        C = np.array([[0.3, 0.09], [0.09, 0.3]]) / 10.

        U = dists.MultivariateNormal([0.5, 0.5], C, 0, 1)
        samples = U.rvs(2000)
        kde = KDEDist(samples)

        sgde = SGDEdist.byLearnerSGDEConfig(
            samples,
            bounds=U.getBounds(),
            config={
                "grid_level": 5,
                "grid_type": "linear",
                "grid_maxDegree": 1,
                "refinement_numSteps": 0,
                "refinement_numPoints": 10,
                "solver_threshold": 1e-10,
                "solver_verbose": False,
                "regularization_type": "Laplace",
                "crossValidation_lambda": 3.16228e-06,
                "crossValidation_enable": False,
                "crossValidation_kfold": 5,
                "crossValidation_silent": False,
                "sgde_makePositive": True,
                "sgde_makePositive_candidateSearchAlgorithm": "joined",
                "sgde_makePositive_interpolationAlgorithm": "setToZero",
                "sgde_generateConsistentGrid": True,
                "sgde_unitIntegrand": True
            })

        sgde_x1 = sgde.marginalizeToDimX(0)
        sgde_x2 = sgde.marginalizeToDimX(1)

        plt.figure()
        plotDensity1d(sgde_x1, label="x1")
        plotDensity1d(sgde_x2, label="x2")
        plt.title(
            "mean: x1=%g, x2=%g; var: x1=%g, x2=%g" %
            (sgde_x1.mean(), sgde_x2.mean(), sgde_x1.var(), sgde_x2.var()))
        plt.legend()

        jsonStr = sgde.toJson()
        jsonObject = json.loads(jsonStr)
        sgde = Dist.fromJson(jsonObject)

        fig = plt.figure()
        plotDensity2d(U, addContour=True)
        plt.title("analytic")

        fig = plt.figure()
        plotDensity2d(kde, addContour=True)
        plt.title("kde")

        fig = plt.figure()
        plotDensity2d(sgde, addContour=True)
        plt.title("sgde (I(f) = %g)" % (doQuadrature(sgde.grid, sgde.alpha), ))

        # print the results
        print("E(x) ~ %g ~ %g" % (kde.mean(), sgde.mean()))
        print("V(x) ~ %g ~ %g" % (kde.var(), sgde.var()))
        print("-" * 60)

        print(kde.cov())
        print(sgde.cov())

        self.assertTrue(np.linalg.norm(C - kde.cov()) < 1e-2, "KDE cov wrong")
        self.assertTrue(
            np.linalg.norm(np.corrcoef(samples.T) - kde.corrcoeff()) < 1e-1,
            "KDE corrcoef wrong")
        plt.show()
예제 #3
0
    def test2DNormalMoments(self):
        mean = 0
        var = 0.5

        U = dists.J(
            [dists.Normal(mean, var, -2, 2),
             dists.Normal(mean, var, -2, 2)])

        np.random.seed(1234567)
        trainSamples = U.rvs(1000)
        dist = SGDEdist.byLearnerSGDEConfig(trainSamples,
                                            config={
                                                "grid_level": 5,
                                                "grid_type": "linear",
                                                "refinement_numSteps": 0,
                                                "refinement_numPoints": 10,
                                                "regularization_type":
                                                "Laplace",
                                                "crossValidation_lambda":
                                                0.000562341,
                                                "crossValidation_enable":
                                                False,
                                                "crossValidation_kfold": 5,
                                                "crossValidation_silent": True,
                                                "sgde_makePositive": True
                                            },
                                            bounds=U.getBounds())
        samples_dist = dist.rvs(1000, shuffle=True)
        kde = KDEDist(trainSamples)
        samples_kde = kde.rvs(1000, shuffle=True)
        # -----------------------------------------------
        self.assertTrue(
            np.abs(U.mean() - dist.mean()) < 1e-2, "SGDE mean wrong")
        self.assertTrue(
            np.abs(U.var() - dist.var()) < 4e-2, "SGDE variance wrong")
        # -----------------------------------------------

        # print the results
        print("E(x) ~ %g ~ %g" % (kde.mean(), dist.mean()))
        print("V(x) ~ %g ~ %g" % (kde.var(), dist.var()))
        print(
            "log  ~ %g ~ %g" %
            (kde.crossEntropy(trainSamples), dist.crossEntropy(trainSamples)))
        print("-" * 60)

        print(dist.cov())
        print(kde.cov())

        sgde_x1 = dist.marginalizeToDimX(0)
        kde_x1 = kde.marginalizeToDimX(0)

        plt.figure()
        plotDensity1d(U.getDistributions()[0], label="analytic")
        plotDensity1d(sgde_x1, label="sgde")
        plotDensity1d(kde_x1, label="kde")
        plt.title("mean: sgde=%g, kde=%g; var: sgde=%g, kde=%g" %
                  (sgde_x1.mean(), kde_x1.mean(), sgde_x1.var(), kde_x1.var()))
        plt.legend()

        fig = plt.figure()
        plotDensity2d(U, addContour=True)
        plt.title("analytic")

        fig = plt.figure()
        plotDensity2d(kde, addContour=True)
        plt.scatter(samples_kde[:, 0], samples_kde[:, 1])
        plt.title("kde")

        fig = plt.figure()
        plotDensity2d(dist, addContour=True)
        plt.scatter(samples_dist[:, 0], samples_dist[:, 1])
        plt.title(
            "sgde (I(f) = %g)" %
            (np.prod(U.getBounds()) * doQuadrature(dist.grid, dist.alpha), ))

        plt.show()