def evaluate(X_tr, y_tr, X_te, y_te, T): grid = sg.RegularGridConfiguration() grid.dim_ = 10 grid.level_ = 4 grid.t_ = T grid.type_ = sg.GridType_ModLinear adapt = sg.AdaptivityConfiguration() adapt.numRefinements_ = 5 adapt.noPoints_ = 3 solv = sg.SLESolverConfiguration() solv.maxIterations_ = 50 solv.eps_ = 1e-5 solv.threshold_ = 1e-5 solv.type_ = sg.SLESolverType_CG final_solv = solv final_solv.maxIterations = 200 regular = sg.RegularizationConfiguration() regular.type_ = sg.RegularizationType_Identity regular.exponentBase_ = 1.0 regular.lambda_ = 1e-3 ## Create the estimator, train it with the training data and then return the error ## for the testing set. estimator = sg.RegressionLearner(grid, adapt, solv, final_solv, regular) estimator.train(X_tr, y_tr) print(estimator.getGridSize()) return estimator.getMSE(X_te, y_te)
def make_estimator(lambda_reg, prior): grid = sg.RegularGridConfiguration() grid.dim_ = 4 grid.level_ = 5 grid.type_ = sg.GridType_ModLinear adapt = sg.AdaptivityConfiguration() adapt.numRefinements_ = 5 adapt.noPoints_ = 3 solv = sg.SLESolverConfiguration() solv.maxIterations_ = 50 solv.eps_ = 10e-6 solv.threshold_ = 10e-6 solv.type_ = sg.SLESolverType_CG final_solv = solv final_solv.maxIterations = 200 regular = sg.RegularizationConfiguration() regular.type_ = sg.RegularizationType_Diagonal regular.exponentBase_ = prior regular.lambda_ = lambda_reg estimator = sg.RegressionLearner(grid, adapt, solv, final_solv, regular) return estimator
def make_estimator(penalty, l1_ratio, lambda_reg): grid = sg.RegularGridConfiguration() grid.dim_ = 10 grid.level_ = 2 grid.type_ = sg.GridType_ModLinear adapt = sg.AdaptivityConfiguration() adapt.numRefinements_ = 0 adapt.noPoints_ = 0 solv = sg.SLESolverConfiguration() solv.maxIterations_ = 500 solv.threshold_ = 10e-10 solv.type_ = sg.SLESolverType_FISTA final_solv = solv regular = sg.RegularizationConfiguration() regular.type_ = penalty regular.exponentBase_ = 1.0 regular.lambda_ = lambda_reg regular.l1_ratio_ = l1_ratio estimator = sg.RegressionLearner(grid, adapt, solv, final_solv,regular) return estimator