예제 #1
0
    def reduce(self, k, phi, psi_n, psi_l, psi_r):
        """Reduce skeleton for distributed tree

        The parameters must respect these equalities (closure property):
        * k(l, b, r) = psi_n(l, phi(b), r)
        * psi_n(psi_n(value, l, y), b, r) = psi_n(value, psi_l(l,b,r), y)
        * psi_n(l, b, psi_n(value, r, y)) = psi_n(value, psi_r(l,b,r), y)

        Parameters
        ----------
        k : callable
            The function used to reduce a BTree into a single value
        phi : callable
            A function used to respect the closure property to allow partial computation
        psi_n : callable
            A function used to respect the closure property to make partial computation
        psi_l : callable
            A function used to respect the closure property to make partial computation on the left
        psi_r : callable
            A function used to respect the closure property to make partial computation on the right
        """
        logger.debug(
            '[START] PID[' + str(PID) + '] reduce skeleton')
        # Step 1 : Local Reduction
        gt = Segment([None] * self.__nb_segs)
        i = 0
        for (start, offset) in self.__global_index[self.__start_index: self.__start_index + self.__nb_segs]:
            logger.debug('[START] PID[' + str(PID) + '] reduce_local from ' + str(start) + ' to ' + str(start + offset))
            gt[i] = Segment(self.__content[start:start + offset]).reduce_local(k, phi, psi_l, psi_r)
            logger.debug('[END] PID[' + str(PID) + '] reduce_local from ' + str(start) + ' to ' + str(start + offset))
            i = i+1
        # Step 2 : Gather local Results
        if PID == 0:
            for i in range(1, NPROCS):
                logger.debug(
                    '[START] PID[' + str(PID) + '] reception from ' + str(i))
                gt.extend(COMM.recv(source=i, tag=TAG_COMM_REDUCE)['c'])
                logger.debug(
                    '[END] PID[' + str(PID) + '] reception from ' + str(i))
        else:
            logger.debug(
                    '[START] PID[' + str(PID) + '] emission to ' + str(0))
            COMM.send({'c': gt}, dest=0, tag=TAG_COMM_REDUCE)
            logger.debug(
                    '[END] PID[' + str(PID) + '] emission to ' + str(0))
        # Step 3 : Global Reduction
        par.at_root(lambda: logger.debug('[START] PID[' + str(PID) + '] reduce_global'))
        res = gt.reduce_global(psi_n) if PID == 0 else None
        par.at_root(lambda: logger.debug('[END] PID[' + str(PID) + '] reduce_global'))
        logger.debug(
            '[END] PID[' + str(PID) + '] reduce skeleton')
        return res
예제 #2
0
파일: ptree.py 프로젝트: Iguane45/PySke
 def __global_upwards_accumulation(psi_n, gt):
     gt2 = None
     if PID == 0:
         par.at_root(
             lambda: logger.debug('[START] PID[%s] uacc_global', PID))
         gt2 = gt.uacc_global(psi_n)
         for i, _ in enumerate(gt2):
             if gt2[i].is_node():
                 gt2[i] = TaggedValue((gt2.get_left(i).get_value(),
                                       gt2.get_right(i).get_value()),
                                      gt2[i].get_tag())
         par.at_root(lambda: logger.debug('[END] PID[%s] uacc_global', PID))
     return gt2
예제 #3
0
파일: ptree.py 프로젝트: Iguane45/PySke
    def reduce(self, k, phi, psi_n, psi_l, psi_r):
        """Reduce skeleton for distributed tree

        The parameters must respect these equalities (closure property):
        * k(l, b, r) = psi_n(l, phi(b), r)
        * psi_n(psi_n(value, l, y), b, r) = psi_n(value, psi_l(l,b,r), y)
        * psi_n(l, b, psi_n(value, r, y)) = psi_n(value, psi_r(l,b,r), y)

        Parameters
        ----------
        k : callable
            The function used to reduce a BTree into a single value
        phi : callable
            A function used to respect the closure property to allow partial computation
        psi_n : callable
            A function used to respect the closure property to make partial computation
        psi_l : callable
            A function used to respect the closure property to make partial computation on the left
        psi_r : callable
            A function used to respect the closure property to make partial computation on the right
        """
        logger.debug('[START] PID[%s] reduce skeleton', PID)
        # Step 1 : Local Reduction
        gt = Segment([None] * self.__nb_segs)
        i = 0
        for (start, offset) in \
                self.__global_index[self.__start_index: self.__start_index + self.__nb_segs]:
            logger.debug('[START] PID[%s] reduce_local from %s to %s', PID,
                         start, start + offset)
            gt[i] = Segment(self.__content[start:start + offset]).reduce_local(
                k, phi, psi_l, psi_r)
            logger.debug('[END] PID[%s] reduce_local from %s to %s', PID,
                         start, start + offset)
            i = i + 1
        # Step 2 : Gather local Results
        self.__gather_local_result(gt, i, TAG_COMM_UACC_1)
        # Step 3 : Global Reduction
        par.at_root(lambda: logger.debug('[START] PID[%s] reduce_global', PID))
        res = gt.reduce_global(psi_n) if PID == 0 else None
        par.at_root(lambda: logger.debug('[END] PID[%s] reduce_global', PID))
        logger.debug('[END] PID[%s] reduce skeleton', PID)
        return res
예제 #4
0
def _main():
    if _PID == 0:
        bal = balanced_btree(_rand_str, 15)
        ill = ill_balanced_btree(_rand_str, 15)
        rdm = random_btree(_rand_str, 15)
        for i in range(1, _NPROCS):
            _COMM.send({'b': bal, 'i': ill, 'r': rdm}, dest=i, tag=1)
    else:
        data = _COMM.recv(source=0, tag=1)
        bal = data['b']
        ill = data['i']
        rdm = data['r']
    par.barrier()
    par.at_root(lambda: print("\nBALANCED\n"))
    _test(bal)
    par.at_root(lambda: print("\nILL BALANCED\n"))
    _test(ill)
    par.at_root(lambda: print("\nRANDOM\n"))
    _test(rdm)
예제 #5
0
def _test(bin_tree):
    print(bin_tree)
    par.at_root(lambda: print("-----"))
    m_bridge_param = 3
    linear_tree = LTree.init_from_bt(bin_tree, m_bridge_param)
    parallel_tree = PTree(linear_tree)
    par.at_root(lambda: print(linear_tree))
    print(parallel_tree)
    par.at_root(lambda: print("-----"))
    res = prefix(parallel_tree)
    par.at_root(lambda: print("prefix result:"))
    print(res)
    par.at_root(lambda: print("-----"))
    res = size(parallel_tree)
    par.at_root(lambda: print("size result:"))
    print(res)
    par.at_root(lambda: print("-----"))
    res = size_by_node(parallel_tree)
    par.at_root(lambda: print("size_by_node result:"))
    print(res)
    par.at_root(lambda: print("-----"))
    res = ancestors(parallel_tree)
    par.at_root(lambda: print("ancestors result:"))
    print(res)
예제 #6
0
    def dacc(self, gl, gr, c, phi_l, phi_r, psi_u, psi_d):
        """Downward accumulation skeleton for distributed tree

        The parameters must respect these equalities (closure property):
        * gl(c, b) = psi_d(c, phi_l(b))
        * gr(c, b) = psi_d(c, phi_r(b))
        * psi_d(psi_d(c, b), a) = psi_d(c, psi_u(b,a))

        Parameters
        ---------
        gl : callable
            The function used to make an accumulation to the left children in a binary tree
        gr : callable
            The function used to make an accumulation to the right children in a binary tree
        c
            Initial value of accumulation
        phi_l : callable
            A function used to respect the closure property to allow partial computation on the left
        phi_r : callable
            A function used to respect the closure property to allow partial computation on the right
        psi_d : callable
            A function used to respect the closure property to make partial downward accumulation
        psi_u : callable
            A function used to respect the closure property to make partial computation
        """
        logger.debug(
            '[START] PID[' + str(PID) + '] dAcc skeleton')
        # Step 1 : Computing Local Intermediate Values
        gt = Segment([None] * self.__nb_segs)
        i = 0
        for (start, offset) in self.__global_index[self.__start_index: self.__start_index + self.__nb_segs]:
            seg = Segment(self.__content[start:start + offset])
            logger.debug(
                '[START] PID[' + str(PID) + '] dacc_path from ' + str(start) + ' to ' + str(start + offset))
            if seg.has_critical():
                gt[i] = seg.dacc_path(phi_l, phi_r, psi_u)
            else:
                gt[i] = TaggedValue(seg[0].get_value(), "L")
            logger.debug(
                '[END] PID[' + str(PID) + '] dacc_path from ' + str(start) + ' to ' + str(start + offset))
            i = i + 1
        # Step 2 : Gather Local Results
        if PID == 0:
            for iproc in range(1, NPROCS):
                logger.debug(
                    '[START] PID[' + str(PID) + '] reception update from ' + str(i))
                gt.extend(COMM.recv(source=iproc, tag=TAG_COMM_DACC_1)['c'])
                logger.debug(
                    '[END] PID[' + str(PID) + '] reception update from ' + str(i))
        else:
            logger.debug(
                '[START] PID[' + str(PID) + '] emission update to ' + str(0))
            COMM.send({'c': gt}, dest=0, tag=TAG_COMM_DACC_1)
            logger.debug(
                '[END] PID[' + str(PID) + '] emission update to ' + str(0))
        # Step 3 : Global Downward Accumulation
        par.at_root(lambda: logger.debug('[START] PID[' + str(PID) + '] dacc_global'))
        gt2 = (gt.dacc_global(psi_d, c) if PID == 0 else None)
        par.at_root(lambda: logger.debug('[END] PID[' + str(PID) + '] dacc_global'))
        # Step 4 : Distributing Global Result
        if PID == 0:
            start = 0
            for iproc in range(NPROCS):
                iproc_off = self.__distribution[iproc]
                if iproc != 0:
                    logger.debug(
                        '[START] PID[' + str(PID) + '] emission global to ' + str(iproc))
                    COMM.send({'g': gt2[start: start + iproc_off]}, dest=iproc, tag=TAG_COMM_DACC_2)
                    logger.debug(
                        '[END] PID[' + str(PID) + '] emission global to ' + str(iproc))
                start = start + iproc_off
        else:
            logger.debug(
                '[START] PID[' + str(PID) + '] reception global from ' + str(0))
            gt2 = COMM.recv(source=0, tag=TAG_COMM_DACC_2)['g']
            logger.debug(
                '[END] PID[' + str(PID) + '] reception global from ' + str(0))
        # Step 5 : Local Downward Accumulation
        content = SList([None] * self.__content.length())
        for i in range(len(self.__global_index[self.__start_index: self.__start_index + self.__nb_segs])):
            (start, offset) = self.__global_index[self.__start_index: self.__start_index + self.__nb_segs][i]
            logger.debug(
                '[START] PID[' + str(PID) + '] dacc_local from ' + str(start) + ' to ' + str(start + offset))
            content[start:start + offset] = \
                Segment(self.__content[start:start + offset]).dacc_local(gl, gr, gt2[i].get_value())
            logger.debug(
                '[END] PID[' + str(PID) + '] dacc_local from ' + str(start) + ' to ' + str(start + offset))
        res = PTree.init(self, content)
        logger.debug(
            '[END] PID[' + str(PID) + '] dAcc skeleton')
        return res
예제 #7
0
    def uacc(self, k, phi, psi_n, psi_l, psi_r):
        """Upward accumulation skeleton for distributed tree

        The parameters must respect these equalities (closure property):
        * k(l, b, r) = psi_n(l, phi(b), r)
        * psi_n(psi_n(value, l, y), b, r) = psi_n(value, psi_l(l,b,r), y)
        * psi_n(l, b, psi_n(value, r, y)) = psi_n(value, psi_r(l,b,r), y)

        Parameters
        ----------
        k : callable
            The function used to reduce a BTree into a single value
        phi : callable
            A function used to respect the closure property to allow partial computation
        psi_n : callable
            A function used to respect the closure property to make partial computation
        psi_l : callable
            A function used to respect the closure property to make partial computation on the left
        psi_r : callable
            A function used to respect the closure property to make partial computation on the right
        """
        logger.debug(
            '[START] PID[' + str(PID) + '] uAcc skeleton')
        assert self.__distribution != []
        # Step 1 : Local Upwards Accumulation
        gt = Segment([None] * self.__nb_segs)
        lt2 = SList([None] * self.__nb_segs)
        i = 0
        for (start, offset) in self.__global_index[self.__start_index: self.__start_index + self.__nb_segs]:
            logger.debug(
                '[START] PID[' + str(PID) + '] uacc_local from ' + str(start) + ' to ' + str(start + offset))
            (top, res) = Segment(self.__content[start:start + offset]).uacc_local(k, phi, psi_l, psi_r)
            logger.debug(
                '[END] PID[' + str(PID) + '] uacc_local from ' + str(start) + ' to ' + str(start + offset))
            gt[i] = top
            lt2[i] = res
            i = i + 1

        # Step 2 : Gather local Results
        if PID == 0:
            for iproc in range(1, NPROCS):
                logger.debug(
                    '[START] PID[' + str(PID) + '] reception local from ' + str(i))
                gt.extend(COMM.recv(source=iproc, tag=TAG_COMM_UACC_1)['c'])
                logger.debug(
                    '[END] PID[' + str(PID) + '] reception local from ' + str(i))
        else:
            logger.debug(
                '[START] PID[' + str(PID) + '] emission local to ' + str(0))
            COMM.send({'c': gt}, dest=0, tag=TAG_COMM_UACC_1)
            logger.debug(
                '[END] PID[' + str(PID) + '] emission local to ' + str(0))

        # Step 3 : Global Upward Accumulation
        gt2 = None
        if PID == 0:
            par.at_root(lambda: logger.debug('[START] PID[' + str(PID) + '] uacc_global'))
            gt2 = gt.uacc_global(psi_n)
            for i in range(len(gt2)):
                if gt2[i].is_node():
                    gt2[i] = TaggedValue((gt2.get_left(i).get_value(), gt2.get_right(i).get_value()), gt2[i].get_tag())
            par.at_root(lambda: logger.debug('[END] PID[' + str(PID) + '] uacc_global'))

        # Step 4 : Distributing Global Result
        start = 0
        if PID == 0:
            for iproc in range(NPROCS):
                iproc_off = self.__distribution[iproc]
                if iproc != 0:
                    logger.debug(
                        '[START] PID[' + str(PID) + '] emission global to ' + str(iproc))
                    COMM.send({'g': gt2[start: start + iproc_off]}, dest=iproc, tag=TAG_COMM_UACC_2)
                    logger.debug(
                        '[END] PID[' + str(PID) + '] emission global to ' + str(iproc))
                start = start + iproc_off
        else:
            logger.debug(
                '[START] PID[' + str(PID) + '] reception global from ' + str(0))
            gt2 = COMM.recv(source=0, tag=TAG_COMM_UACC_2)['g']
            logger.debug(
                '[END] PID[' + str(PID) + '] reception global from ' + str(0))

        # Step 5 : Local Updates
        content = SList([None] * self.__content.length())
        for i in range(len(self.__global_index[self.__start_index: self.__start_index + self.__nb_segs])):
            (start, offset) = self.__global_index[self.__start_index: self.__start_index + self.__nb_segs][i]
            logger.debug('[START] PID[' + str(PID) + '] uacc_update from ' + str(start) + ' to ' + str(start + offset))
            if gt[i].is_node():
                (lc, rc) = gt2[i].get_value()
                val = Segment(self.__content[start:start + offset]).uacc_update(lt2[i], k, lc, rc)
            else:
                val = lt2[i]
            logger.debug('[END] PID[' + str(PID) + '] uacc_update from ' + str(start) + ' to ' + str(start + offset))
            content[start:start + offset] = val
        res = PTree.init(self, content)
        logger.debug(
            '[END] PID[' + str(PID) + '] uAcc skeleton')
        return res
예제 #8
0
파일: ptree.py 프로젝트: Iguane45/PySke
    def dacc(self, gl, gr, c, phi_l, phi_r, psi_u, psi_d):
        """Downward accumulation skeleton for distributed tree

        The parameters must respect these equalities (closure property):
        * gl(c, b) = psi_d(c, phi_l(b))
        * gr(c, b) = psi_d(c, phi_r(b))
        * psi_d(psi_d(c, b), a) = psi_d(c, psi_u(b,a))

        Parameters
        ---------
        gl : callable
            The function used to make an accumulation to the left children in a binary tree
        gr : callable
            The function used to make an accumulation to the right children in a binary tree
        c
            Initial value of accumulation
        phi_l : callable
            A function used to respect the closure property to allow partial computation
            on the left
        phi_r : callable
            A function used to respect the closure property to allow partial computation
            on the right
        psi_d : callable
            A function used to respect the closure property to make partial downward accumulation
        psi_u : callable
            A function used to respect the closure property to make partial computation
        """
        logger.debug('[START] PID[%s] dAcc skeleton', PID)
        # Step 1 : Computing Local Intermediate Values
        gt = Segment([None] * self.__nb_segs)
        i = 0
        for (start, offset) in \
                self.__global_index[self.__start_index: self.__start_index + self.__nb_segs]:
            seg = Segment(self.__content[start:start + offset])
            logger.debug('[START] PID[%s] dacc_path from %s to %s', PID, start,
                         start + offset)
            if seg.has_critical():
                gt[i] = seg.dacc_path(phi_l, phi_r, psi_u)
            else:
                gt[i] = TaggedValue(seg[0].get_value(), "L")
            logger.debug('[END] PID[%s] dacc_path from %s to %s', PID, start,
                         start + offset)
            i = i + 1
        # Step 2 : Gather Local Results
        self.__gather_local_result(gt, i, TAG_COMM_DACC_1)
        # Step 3 : Global Downward Accumulation
        par.at_root(lambda: logger.debug('[START] PID[%s] dacc_global', PID))
        gt2 = (gt.dacc_global(psi_d, c) if PID == 0 else None)
        par.at_root(lambda: logger.debug('[END] PID[%s] dacc_global', PID))
        # Step 4 : Distributing Global Result
        gt2 = self.__distribute_global_result(gt2, TAG_COMM_DACC_2)
        # Step 5 : Local Downward Accumulation
        content = SList([None] * self.__content.length())
        for i in range(
                len(self.__global_index[self.__start_index:self.__start_index +
                                        self.__nb_segs])):
            (start, offset
             ) = self.__global_index[self.__start_index:self.__start_index +
                                     self.__nb_segs][i]
            logger.debug('[START] PID[%s] dacc_local from %s to %s', PID,
                         start, start + offset)
            content[start:start + offset] = \
                Segment(self.__content[start:start + offset]).dacc_local(gl, gr, gt2[i].get_value())
            logger.debug('[END] PID[%s] dacc_local from %s to %s', PID, start,
                         start + offset)
        logger.debug('[END] PID[%s] dAcc skeleton', PID)
        return PTree.init(self, content)