# Load and parse the data
    def parsePoint(labeledData):
        return (labeledData.label, labeledData.features[0], 1.0)

    data = MLUtils.loadLibSVMFile(
        sc, "data/mllib/sample_isotonic_regression_libsvm_data.txt")

    # Create label, feature, weight tuples from input data with weight set to default value 1.0.
    parsedData = data.map(parsePoint)

    # Split data into training (60%) and test (40%) sets.
    training, test = parsedData.randomSplit([0.6, 0.4], 11)

    # Create isotonic regression model from training data.
    # Isotonic parameter defaults to true so it is only shown for demonstration
    model = IsotonicRegression.train(training)

    # Create tuples of predicted and real labels.
    predictionAndLabel = test.map(lambda p: (model.predict(p[1]), p[0]))

    # Calculate mean squared error between predicted and real labels.
    meanSquaredError = predictionAndLabel.map(lambda pl: math.pow(
        (pl[0] - pl[1]), 2)).mean()
    print("Mean Squared Error = " + str(meanSquaredError))

    # Save and load model
    model.save(sc, "target/tmp/myIsotonicRegressionModel")
    sameModel = IsotonicRegressionModel.load(
        sc, "target/tmp/myIsotonicRegressionModel")
    # $example off$
예제 #2
0
    sc = SparkContext(appName="PythonIsotonicRegressionExample")

    # $example on$
    # Load and parse the data
    def parsePoint(labeledData):
        return (labeledData.label, labeledData.features[0], 1.0)

    data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_isotonic_regression_libsvm_data.txt")

    # Create label, feature, weight tuples from input data with weight set to default value 1.0.
    parsedData = data.map(parsePoint)

    # Split data into training (60%) and test (40%) sets.
    training, test = parsedData.randomSplit([0.6, 0.4], 11)

    # Create isotonic regression model from training data.
    # Isotonic parameter defaults to true so it is only shown for demonstration
    model = IsotonicRegression.train(training)

    # Create tuples of predicted and real labels.
    predictionAndLabel = test.map(lambda p: (model.predict(p[1]), p[0]))

    # Calculate mean squared error between predicted and real labels.
    meanSquaredError = predictionAndLabel.map(lambda pl: math.pow((pl[0] - pl[1]), 2)).mean()
    print("Mean Squared Error = " + str(meanSquaredError))

    # Save and load model
    model.save(sc, "target/tmp/myIsotonicRegressionModel")
    sameModel = IsotonicRegressionModel.load(sc, "target/tmp/myIsotonicRegressionModel")
    # $example off$
예제 #3
0
conf = SparkConf().setAppName('Isotonic Regression').setMaster('local[2]')
sc =SparkContext(conf=conf)

# load and parse data
def parsePoint(labeledData):
    return (labeledData.label, labeledData.features[0], 1.0)

data = MLUtils.loadLibSVMFile(sc, '../data/sample_isotonic_regression_libsvm_data.txt')
# crate label, feature, weight tuples from input data with weight set to default value 1.0
parsedData = data.map(parsePoint)

# split the data into training and test sets
(trainingData, testData) = parsedData.randomSplit([0.7, 0.3])

# create isotonic regression model from training data
model = IsotonicRegression.train(trainingData)
print('model:')
print(model)
# create tuples of predicted and real labels
predictionAndLabel = testData.map(lambda p : (model.predict(p[1]), p[0]))

# calculate mean squared error between predicted and real labels
meanSquaredError = predictionAndLabel.map(lambda pl : math.pow((pl[0]-pl[1]), 2)).mean()
print('mean squared error :' + str(meanSquaredError))

# save and load model
model.save(sc, '../model/myIsotonicRegressionModel')
sameModel = IsotonicRegressionModel.load(sc, '../model/myIsotonicRegressionModel')

sc.stop()