def _set_ordered(self, *, ordered: bool, inplace: bool) -> Optional["ps.Series"]: from pyspark.pandas.frame import DataFrame if self.ordered == ordered: if inplace: return None else: psser = self._data else: internal = self._data._psdf._internal.with_new_spark_column( self._data._column_label, self._data.spark.column, field=self._data._internal.data_fields[0].copy( dtype=CategoricalDtype(categories=self.categories, ordered=ordered)), ) if inplace: self._data._psdf._update_internal_frame(internal) return None else: psser = DataFrame(internal)._psser_for( self._data._column_label) return psser._with_new_scol(psser.spark.column, field=psser._internal.data_fields[0])
def execute(self) -> DataFrame: """ Returns a DataFrame for which the SQL statement has been executed by the underlying SQL engine. >>> str0 = 'abc' >>> ps.sql("select {str0}") abc 0 abc >>> str1 = 'abc"abc' >>> str2 = "abc'abc" >>> ps.sql("select {str0}, {str1}, {str2}") abc abc"abc abc'abc 0 abc abc"abc abc'abc >>> strs = ['a', 'b'] >>> ps.sql("select 'a' in {strs} as cond1, 'c' in {strs} as cond2") cond1 cond2 0 True False """ blocks = _string.formatter_parser(self._statement) # TODO: use a string builder res = "" try: for (pre, inner, _, _) in blocks: var_next = "" if inner is None else self._convert(inner) res = res + pre + var_next self._normalized_statement = res sdf = self._session.sql(self._normalized_statement) finally: for v in self._temp_views: self._session.catalog.dropTempView(v) return DataFrame(sdf)
def _is_monotonic_decreasing(self) -> Series: window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1) cond = SF.lit(True) has_not_null = SF.lit(True) for scol in self._internal.index_spark_columns[::-1]: data_type = self._internal.spark_type_for(scol) prev = F.lag(scol, 1).over(window) compare = MultiIndex._comparator_for_monotonic_increasing(data_type) # Since pandas 1.1.4, null value is not allowed at any levels of MultiIndex. # Therefore, we should check `has_not_null` over the all levels. has_not_null = has_not_null & scol.isNotNull() cond = F.when(scol.eqNullSafe(prev), cond).otherwise(compare(scol, prev, Column.__lt__)) cond = has_not_null & (prev.isNull() | cond) cond_name = verify_temp_column_name( self._internal.spark_frame.select(self._internal.index_spark_columns), "__is_monotonic_decreasing_cond__", ) sdf = self._internal.spark_frame.select( self._internal.index_spark_columns + [cond.alias(cond_name)] ) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_fields=self._internal.index_fields, ) return first_series(DataFrame(internal))
def predict( self, data: Union[DataFrame, pd.DataFrame]) -> Union[Series, pd.Series]: """ Returns a prediction on the data. If the data is a pandas-on-Spark DataFrame, the return is a pandas-on-Spark Series. If the data is a pandas Dataframe, the return is the expected output of the underlying pyfunc object (typically a pandas Series or a numpy array). """ if isinstance(data, pd.DataFrame): return self._model.predict(data) elif isinstance(data, DataFrame): return_col = self._model_udf(*data._internal.data_spark_columns) # TODO: the columns should be named according to the mlflow spec # However, this is only possible with spark >= 3.0 # s = F.struct(*data.columns) # return_col = self._model_udf(s) column_labels: List[Label] = [ (col, ) for col in data._internal.spark_frame.select( return_col).columns ] internal = data._internal.copy(column_labels=column_labels, data_spark_columns=[return_col], data_fields=None) return first_series(DataFrame(internal)) else: raise ValueError("unknown data type: {}".format( type(data).__name__))
def intersection(self, other: Union[DataFrame, Series, Index, List]) -> "MultiIndex": """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like Returns ------- intersection : MultiIndex Examples -------- >>> midx1 = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) >>> midx2 = ps.MultiIndex.from_tuples([("c", "z"), ("d", "w")]) >>> midx1.intersection(midx2).sort_values() # doctest: +SKIP MultiIndex([('c', 'z')], ) """ if isinstance(other, Series) or not is_list_like(other): raise TypeError("other must be a MultiIndex or a list of tuples") elif isinstance(other, DataFrame): raise ValueError("Index data must be 1-dimensional") elif isinstance(other, MultiIndex): spark_frame_other = other.to_frame().to_spark() keep_name = self.names == other.names elif isinstance(other, Index): # Always returns an empty MultiIndex if `other` is Index. return cast(MultiIndex, self.to_frame().head(0).index) elif not all(isinstance(item, tuple) for item in other): raise TypeError("other must be a MultiIndex or a list of tuples") else: other = MultiIndex.from_tuples(list(other)) spark_frame_other = cast(MultiIndex, other).to_frame().to_spark() keep_name = True index_fields = self._index_fields_for_union_like(other, func_name="intersection") default_name: List[Name] = [SPARK_INDEX_NAME_FORMAT(i) for i in range(self.nlevels)] spark_frame_self = self.to_frame(name=default_name).to_spark() spark_frame_intersected = spark_frame_self.intersect(spark_frame_other) if keep_name: index_names = self._internal.index_names else: index_names = None internal = InternalFrame( spark_frame=spark_frame_intersected, index_spark_columns=[ scol_for(spark_frame_intersected, cast(str, col)) for col in default_name ], index_names=index_names, index_fields=index_fields, ) return cast(MultiIndex, DataFrame(internal).index)
def analyzed(self) -> "ps.Series": """ Returns a new Series with the analyzed Spark DataFrame. After multiple operations, the underlying Spark plan could grow huge and make the Spark planner take a long time to finish the planning. This function is for the workaround to avoid it. .. note:: After analyzed, operations between the analyzed Series and the original one will **NOT** work without setting a config `compute.ops_on_diff_frames` to `True`. Returns ------- Series Examples -------- >>> ser = ps.Series([1, 2, 3]) >>> ser 0 1 1 2 2 3 dtype: int64 The analyzed one should return the same value. >>> ser.spark.analyzed 0 1 1 2 2 3 dtype: int64 However, it won't work with the same anchor Series. >>> ser + ser.spark.analyzed Traceback (most recent call last): ... ValueError: ... enable 'compute.ops_on_diff_frames' option. >>> with ps.option_context('compute.ops_on_diff_frames', True): ... (ser + ser.spark.analyzed).sort_index() 0 2 1 4 2 6 dtype: int64 """ from pyspark.pandas.frame import DataFrame from pyspark.pandas.series import first_series return first_series(DataFrame(self._data._internal.resolved_copy))
def coalesce(self, num_partitions: int) -> "ps.DataFrame": """ Returns a new DataFrame that has exactly `num_partitions` partitions. .. note:: This operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to num_partitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of num_partitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). Parameters ---------- num_partitions : int The target number of partitions. Returns ------- DataFrame Examples -------- >>> kdf = ps.DataFrame({"age": [5, 5, 2, 2], ... "name": ["Bob", "Bob", "Alice", "Alice"]}).set_index("age") >>> kdf.sort_index() # doctest: +NORMALIZE_WHITESPACE name age 2 Alice 2 Alice 5 Bob 5 Bob >>> new_kdf = kdf.spark.coalesce(1) >>> new_kdf.to_spark().rdd.getNumPartitions() 1 >>> new_kdf.sort_index() # doctest: +NORMALIZE_WHITESPACE name age 2 Alice 2 Alice 5 Bob 5 Bob """ from pyspark.pandas.frame import DataFrame internal = self._kdf._internal.resolved_copy coalesced_sdf = internal.spark_frame.coalesce(num_partitions) return DataFrame(internal.with_new_sdf(coalesced_sdf))
def analyzed(self) -> "ps.DataFrame": """ Returns a new DataFrame with the analyzed Spark DataFrame. After multiple operations, the underlying Spark plan could grow huge and make the Spark planner take a long time to finish the planning. This function is for the workaround to avoid it. .. note:: After analyzed, operations between the analyzed DataFrame and the original one will **NOT** work without setting a config `compute.ops_on_diff_frames` to `True`. Returns ------- DataFrame Examples -------- >>> df = ps.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, columns=["a", "b"]) >>> df a b 0 1 4 1 2 5 2 3 6 The analyzed one should return the same value. >>> df.spark.analyzed a b 0 1 4 1 2 5 2 3 6 However, it won't work with the same anchor Series. >>> df + df.spark.analyzed Traceback (most recent call last): ... ValueError: ... enable 'compute.ops_on_diff_frames' option. >>> with ps.option_context('compute.ops_on_diff_frames', True): ... (df + df.spark.analyzed).sort_index() a b 0 2 8 1 4 10 2 6 12 """ from pyspark.pandas.frame import DataFrame return DataFrame(self._kdf._internal.resolved_copy)
def _auto_patch_pandas() -> None: import pandas as pd # In order to use it in test cases. global _frame_has_class_getitem global _series_has_class_getitem _frame_has_class_getitem = hasattr(pd.DataFrame, "__class_getitem__") _series_has_class_getitem = hasattr(pd.Series, "__class_getitem__") if sys.version_info >= (3, 7): # Just in case pandas implements '__class_getitem__' later. if not _frame_has_class_getitem: pd.DataFrame.__class_getitem__ = lambda params: DataFrame.__class_getitem__(params) if not _series_has_class_getitem: pd.Series.__class_getitem__ = lambda params: Series.__class_getitem__(params)
def get_level_values(self, level: Union[int, Name]) -> Index: """ Return vector of label values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index Values is a level of this MultiIndex converted to a single :class:`Index` (or subclass thereof). Examples -------- Create a MultiIndex: >>> mi = ps.MultiIndex.from_tuples([('x', 'a'), ('x', 'b'), ('y', 'a')]) >>> mi.names = ['level_1', 'level_2'] Get level values by supplying level as either integer or name: >>> mi.get_level_values(0) Index(['x', 'x', 'y'], dtype='object', name='level_1') >>> mi.get_level_values('level_2') Index(['a', 'b', 'a'], dtype='object', name='level_2') """ level = self._get_level_number(level) index_scol = self._internal.index_spark_columns[level] index_name = self._internal.index_names[level] index_field = self._internal.index_fields[level] internal = self._internal.copy( index_spark_columns=[index_scol], index_names=[index_name], index_fields=[index_field], column_labels=[], data_spark_columns=[], data_fields=[], ) return DataFrame(internal).index
def execute(self, index_col: Optional[Union[str, List[str]]]) -> DataFrame: """ Returns a DataFrame for which the SQL statement has been executed by the underlying SQL engine. >>> from pyspark.pandas import sql_processor >>> # we will call 'sql_processor' directly in doctests so decrease one level. >>> sql_processor._CAPTURE_SCOPES = 2 >>> sql = sql_processor.sql >>> str0 = 'abc' >>> sql("select {str0}") abc 0 abc >>> str1 = 'abc"abc' >>> str2 = "abc'abc" >>> sql("select {str0}, {str1}, {str2}") abc abc"abc abc'abc 0 abc abc"abc abc'abc >>> strs = ['a', 'b'] >>> sql("select 'a' in {strs} as cond1, 'c' in {strs} as cond2") cond1 cond2 0 True False """ blocks = _string.formatter_parser(self._statement) # TODO: use a string builder res = "" try: for (pre, inner, _, _) in blocks: var_next = "" if inner is None else self._convert(inner) res = res + pre + var_next self._normalized_statement = res sdf = self._session.sql(self._normalized_statement) finally: for v in self._temp_views: self._session.catalog.dropTempView(v) index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame(spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names))
def analyzed(self) -> "ps.Index": """ Returns a new Index with the analyzed Spark DataFrame. After multiple operations, the underlying Spark plan could grow huge and make the Spark planner take a long time to finish the planning. This function is for the workaround to avoid it. .. note:: After analyzed, operations between the analyzed Series and the original one will **NOT** work without setting a config `compute.ops_on_diff_frames` to `True`. Returns ------- Index Examples -------- >>> idx = ps.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') The analyzed one should return the same value. >>> idx.spark.analyzed Int64Index([1, 2, 3], dtype='int64') However, it won't work with the same anchor Index. >>> idx + idx.spark.analyzed Traceback (most recent call last): ... ValueError: ... enable 'compute.ops_on_diff_frames' option. >>> with ps.option_context('compute.ops_on_diff_frames', True): ... (idx + idx.spark.analyzed).sort_values() Int64Index([2, 4, 6], dtype='int64') """ from pyspark.pandas.frame import DataFrame return DataFrame(self._data._internal.resolved_copy).index
def repartition(self, num_partitions: int) -> "ps.DataFrame": """ Returns a new DataFrame partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. Parameters ---------- num_partitions : int The target number of partitions. Returns ------- DataFrame Examples -------- >>> kdf = ps.DataFrame({"age": [5, 5, 2, 2], ... "name": ["Bob", "Bob", "Alice", "Alice"]}).set_index("age") >>> kdf.sort_index() # doctest: +NORMALIZE_WHITESPACE name age 2 Alice 2 Alice 5 Bob 5 Bob >>> new_kdf = kdf.spark.repartition(7) >>> new_kdf.to_spark().rdd.getNumPartitions() 7 >>> new_kdf.sort_index() # doctest: +NORMALIZE_WHITESPACE name age 2 Alice 2 Alice 5 Bob 5 Bob """ from pyspark.pandas.frame import DataFrame internal = self._kdf._internal.resolved_copy repartitioned_sdf = internal.spark_frame.repartition(num_partitions) return DataFrame(internal.with_new_sdf(repartitioned_sdf))
def hint(self, name: str, *parameters) -> "ps.DataFrame": """ Specifies some hint on the current DataFrame. Parameters ---------- name : A name of the hint. parameters : Optional parameters. Returns ------- ret : DataFrame with the hint. See Also -------- broadcast : Marks a DataFrame as small enough for use in broadcast joins. Examples -------- >>> df1 = ps.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']).set_index('lkey') >>> df2 = ps.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']).set_index('rkey') >>> merged = df1.merge(df2.spark.hint("broadcast"), left_index=True, right_index=True) >>> merged.spark.explain() # doctest: +ELLIPSIS == Physical Plan == ... ...BroadcastHashJoin... ... """ from pyspark.pandas.frame import DataFrame internal = self._kdf._internal.resolved_copy return DataFrame( internal.with_new_sdf(internal.spark_frame.hint(name, *parameters)))
def local_checkpoint(self, eager: bool = True) -> "ps.DataFrame": """Returns a locally checkpointed version of this DataFrame. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. Parameters ---------- eager : bool Whether to locally checkpoint this DataFrame immediately Returns ------- DataFrame Examples -------- >>> kdf = ps.DataFrame({"a": ["a", "b", "c"]}) >>> kdf a 0 a 1 b 2 c >>> new_kdf = kdf.spark.local_checkpoint() >>> new_kdf a 0 a 1 b 2 c """ from pyspark.pandas.frame import DataFrame internal = self._kdf._internal.resolved_copy checkpointed_sdf = internal.spark_frame.localCheckpoint(eager) return DataFrame(internal.with_new_sdf(checkpointed_sdf))
def predict(self, data): """ Returns a prediction on the data. If the data is a pandas-on-Spark DataFrame, the return is a pandas-on-Spark Series. If the data is a pandas Dataframe, the return is the expected output of the underlying pyfunc object (typically a pandas Series or a numpy array). """ if isinstance(data, pd.DataFrame): return self._model.predict(data) if isinstance(data, DataFrame): return_col = self._model_udf(*data._internal.data_spark_columns) # TODO: the columns should be named according to the mlflow spec # However, this is only possible with spark >= 3.0 # s = F.struct(*data.columns) # return_col = self._model_udf(s) column_labels = [(col, ) for col in data._internal.spark_frame.select( return_col).columns] internal = data._internal.copy(column_labels=column_labels, data_spark_columns=[return_col], data_dtypes=None) return first_series(DataFrame(internal))
def checkpoint(self, eager: bool = True) -> "ps.DataFrame": """Returns a checkpointed version of this DataFrame. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with `SparkContext.setCheckpointDir`. Parameters ---------- eager : bool Whether to checkpoint this DataFrame immediately Returns ------- DataFrame Examples -------- >>> kdf = ps.DataFrame({"a": ["a", "b", "c"]}) >>> kdf a 0 a 1 b 2 c >>> new_kdf = kdf.spark.checkpoint() # doctest: +SKIP >>> new_kdf # doctest: +SKIP a 0 a 1 b 2 c """ from pyspark.pandas.frame import DataFrame internal = self._kdf._internal.resolved_copy checkpointed_sdf = internal.spark_frame.checkpoint(eager) return DataFrame(internal.with_new_sdf(checkpointed_sdf))
def from_frame(df: DataFrame, names: Optional[List[Name]] = None) -> "MultiIndex": """ Make a MultiIndex from a DataFrame. Parameters ---------- df : DataFrame DataFrame to be converted to MultiIndex. names : list-like, optional If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence. Returns ------- MultiIndex The MultiIndex representation of the given DataFrame. See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. Examples -------- >>> df = ps.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df # doctest: +SKIP a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> ps.MultiIndex.from_frame(df) # doctest: +SKIP MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b']) Using explicit names, instead of the column names >>> ps.MultiIndex.from_frame(df, names=['state', 'observation']) # doctest: +SKIP MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation']) """ if not isinstance(df, DataFrame): raise TypeError("Input must be a DataFrame") sdf = df.to_spark() if names is None: names = df._internal.column_labels elif not is_list_like(names): raise TypeError("Names should be list-like for a MultiIndex") else: names = [ name if is_name_like_tuple(name) else (name, ) for name in names ] internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in sdf.columns], index_names=names, ) return cast(MultiIndex, DataFrame(internal).index)
def align_diff_frames( resolve_func: Callable[ ["DataFrame", List[Tuple], List[Tuple]], Iterator[Tuple["Series", Tuple]] ], this: "DataFrame", that: "DataFrame", fillna: bool = True, how: str = "full", preserve_order_column: bool = False, ) -> "DataFrame": """ This method aligns two different DataFrames with a given `func`. Columns are resolved and handled within the given `func`. To use this, `compute.ops_on_diff_frames` should be True, for now. :param resolve_func: Takes aligned (joined) DataFrame, the column of the current DataFrame, and the column of another DataFrame. It returns an iterable that produces Series. >>> from pyspark.pandas.config import set_option, reset_option >>> >>> set_option("compute.ops_on_diff_frames", True) >>> >>> psdf1 = ps.DataFrame({'a': [9, 8, 7, 6, 5, 4, 3, 2, 1]}) >>> psdf2 = ps.DataFrame({'a': [9, 8, 7, 6, 5, 4, 3, 2, 1]}) >>> >>> def func(psdf, this_column_labels, that_column_labels): ... psdf # conceptually this is A + B. ... ... # Within this function, Series from A or B can be performed against `psdf`. ... this_label = this_column_labels[0] # this is ('a',) from psdf1. ... that_label = that_column_labels[0] # this is ('a',) from psdf2. ... new_series = (psdf[this_label] - psdf[that_label]).rename(str(this_label)) ... ... # This new series will be placed in new DataFrame. ... yield (new_series, this_label) >>> >>> >>> align_diff_frames(func, psdf1, psdf2).sort_index() a 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 >>> reset_option("compute.ops_on_diff_frames") :param this: a DataFrame to align :param that: another DataFrame to align :param fillna: If True, it fills missing values in non-common columns in both `this` and `that`. Otherwise, it returns as are. :param how: join way. In addition, it affects how `resolve_func` resolves the column conflict. - full: `resolve_func` should resolve only common columns from 'this' and 'that' DataFrames. For instance, if 'this' has columns A, B, C and that has B, C, D, `this_columns` and 'that_columns' in this function are B, C and B, C. - left: `resolve_func` should resolve columns including that columns. For instance, if 'this' has columns A, B, C and that has B, C, D, `this_columns` is B, C but `that_columns` are B, C, D. - inner: Same as 'full' mode; however, internally performs inner join instead. :return: Aligned DataFrame """ from pyspark.pandas.frame import DataFrame assert how == "full" or how == "left" or how == "inner" this_column_labels = this._internal.column_labels that_column_labels = that._internal.column_labels common_column_labels = set(this_column_labels).intersection(that_column_labels) # 1. Perform the join given two dataframes. combined = combine_frames(this, that, how=how, preserve_order_column=preserve_order_column) # 2. Apply the given function to transform the columns in a batch and keep the new columns. combined_column_labels = combined._internal.column_labels that_columns_to_apply = [] # type: List[Tuple] this_columns_to_apply = [] # type: List[Tuple] additional_that_columns = [] # type: List[Tuple] columns_to_keep = [] # type: List[Union[Series, Column]] column_labels_to_keep = [] # type: List[Tuple] for combined_label in combined_column_labels: for common_label in common_column_labels: if combined_label == tuple(["this", *common_label]): this_columns_to_apply.append(combined_label) break elif combined_label == tuple(["that", *common_label]): that_columns_to_apply.append(combined_label) break else: if how == "left" and combined_label in [ tuple(["that", *label]) for label in that_column_labels ]: # In this case, we will drop `that_columns` in `columns_to_keep` but passes # it later to `func`. `func` should resolve it. # Note that adding this into a separate list (`additional_that_columns`) # is intentional so that `this_columns` and `that_columns` can be paired. additional_that_columns.append(combined_label) elif fillna: columns_to_keep.append(SF.lit(None).cast(DoubleType()).alias(str(combined_label))) column_labels_to_keep.append(combined_label) else: columns_to_keep.append(combined._psser_for(combined_label)) column_labels_to_keep.append(combined_label) that_columns_to_apply += additional_that_columns # Should extract columns to apply and do it in a batch in case # it adds new columns for example. if len(this_columns_to_apply) > 0 or len(that_columns_to_apply) > 0: psser_set, column_labels_set = zip( *resolve_func(combined, this_columns_to_apply, that_columns_to_apply) ) columns_applied = list(psser_set) # type: List[Union[Series, Column]] column_labels_applied = list(column_labels_set) # type: List[Tuple] else: columns_applied = [] column_labels_applied = [] applied = DataFrame( combined._internal.with_new_columns( columns_applied + columns_to_keep, column_labels=column_labels_applied + column_labels_to_keep, ) ) # type: DataFrame # 3. Restore the names back and deduplicate columns. this_labels = OrderedDict() # Add columns in an order of its original frame. for this_label in this_column_labels: for new_label in applied._internal.column_labels: if new_label[1:] not in this_labels and this_label == new_label[1:]: this_labels[new_label[1:]] = new_label # After that, we will add the rest columns. other_labels = OrderedDict() for new_label in applied._internal.column_labels: if new_label[1:] not in this_labels: other_labels[new_label[1:]] = new_label psdf = applied[list(this_labels.values()) + list(other_labels.values())] psdf.columns = psdf.columns.droplevel() return psdf
def combine_frames( this: "DataFrame", *args: DataFrameOrSeries, how: str = "full", preserve_order_column: bool = False ) -> "DataFrame": """ This method combines `this` DataFrame with a different `that` DataFrame or Series from a different DataFrame. It returns a DataFrame that has prefix `this_` and `that_` to distinct the columns names from both DataFrames It internally performs a join operation which can be expensive in general. So, if `compute.ops_on_diff_frames` option is False, this method throws an exception. """ from pyspark.pandas.config import get_option from pyspark.pandas.frame import DataFrame from pyspark.pandas.internal import ( InternalField, InternalFrame, HIDDEN_COLUMNS, NATURAL_ORDER_COLUMN_NAME, SPARK_INDEX_NAME_FORMAT, ) from pyspark.pandas.series import Series if all(isinstance(arg, Series) for arg in args): assert all( same_anchor(arg, args[0]) for arg in args ), "Currently only one different DataFrame (from given Series) is supported" assert not same_anchor(this, args[0]), "We don't need to combine. All series is in this." that = args[0]._psdf[list(args)] elif len(args) == 1 and isinstance(args[0], DataFrame): assert isinstance(args[0], DataFrame) assert not same_anchor( this, args[0] ), "We don't need to combine. `this` and `that` are same." that = args[0] else: raise AssertionError("args should be single DataFrame or " "single/multiple Series") if get_option("compute.ops_on_diff_frames"): def resolve(internal: InternalFrame, side: str) -> InternalFrame: rename = lambda col: "__{}_{}".format(side, col) internal = internal.resolved_copy sdf = internal.spark_frame sdf = internal.spark_frame.select( *[ scol_for(sdf, col).alias(rename(col)) for col in sdf.columns if col not in HIDDEN_COLUMNS ], *HIDDEN_COLUMNS ) return internal.copy( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.index_spark_column_names ], index_fields=[ field.copy(name=rename(field.name)) for field in internal.index_fields ], data_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.data_spark_column_names ], data_fields=[field.copy(name=rename(field.name)) for field in internal.data_fields], ) this_internal = resolve(this._internal, "this") that_internal = resolve(that._internal, "that") this_index_map = list( zip( this_internal.index_spark_column_names, this_internal.index_names, this_internal.index_fields, ) ) that_index_map = list( zip( that_internal.index_spark_column_names, that_internal.index_names, that_internal.index_fields, ) ) assert len(this_index_map) == len(that_index_map) join_scols = [] merged_index_scols = [] # Note that the order of each element in index_map is guaranteed according to the index # level. this_and_that_index_map = list(zip(this_index_map, that_index_map)) this_sdf = this_internal.spark_frame.alias("this") that_sdf = that_internal.spark_frame.alias("that") # If the same named index is found, that's used. index_column_names = [] index_use_extension_dtypes = [] for ( i, ((this_column, this_name, this_field), (that_column, that_name, that_field)), ) in enumerate(this_and_that_index_map): if this_name == that_name: # We should merge the Spark columns into one # to mimic pandas' behavior. this_scol = scol_for(this_sdf, this_column) that_scol = scol_for(that_sdf, that_column) join_scol = this_scol == that_scol join_scols.append(join_scol) column_name = SPARK_INDEX_NAME_FORMAT(i) index_column_names.append(column_name) index_use_extension_dtypes.append( any(field.is_extension_dtype for field in [this_field, that_field]) ) merged_index_scols.append( F.when(this_scol.isNotNull(), this_scol).otherwise(that_scol).alias(column_name) ) else: raise ValueError("Index names must be exactly matched currently.") assert len(join_scols) > 0, "cannot join with no overlapping index names" joined_df = this_sdf.join(that_sdf, on=join_scols, how=how) if preserve_order_column: order_column = [scol_for(this_sdf, NATURAL_ORDER_COLUMN_NAME)] else: order_column = [] joined_df = joined_df.select( *merged_index_scols, *( scol_for(this_sdf, this_internal.spark_column_name_for(label)) for label in this_internal.column_labels ), *( scol_for(that_sdf, that_internal.spark_column_name_for(label)) for label in that_internal.column_labels ), *order_column ) index_spark_columns = [scol_for(joined_df, col) for col in index_column_names] index_columns = set(index_column_names) new_data_columns = [ col for col in joined_df.columns if col not in index_columns and col != NATURAL_ORDER_COLUMN_NAME ] schema = joined_df.select(*index_spark_columns, *new_data_columns).schema index_fields = [ InternalField.from_struct_field(struct_field, use_extension_dtypes=use_extension_dtypes) for struct_field, use_extension_dtypes in zip( schema.fields[: len(index_spark_columns)], index_use_extension_dtypes ) ] data_fields = [ InternalField.from_struct_field( struct_field, use_extension_dtypes=field.is_extension_dtype ) for struct_field, field in zip( schema.fields[len(index_spark_columns) :], this_internal.data_fields + that_internal.data_fields, ) ] level = max(this_internal.column_labels_level, that_internal.column_labels_level) def fill_label(label: Optional[Tuple]) -> List: if label is None: return ([""] * (level - 1)) + [None] else: return ([""] * (level - len(label))) + list(label) column_labels = [ tuple(["this"] + fill_label(label)) for label in this_internal.column_labels ] + [tuple(["that"] + fill_label(label)) for label in that_internal.column_labels] column_label_names = ( cast(List[Optional[Tuple]], [None]) * (1 + level - this_internal.column_labels_level) ) + this_internal.column_label_names return DataFrame( InternalFrame( spark_frame=joined_df, index_spark_columns=index_spark_columns, index_names=this_internal.index_names, index_fields=index_fields, column_labels=column_labels, data_spark_columns=[scol_for(joined_df, col) for col in new_data_columns], data_fields=data_fields, column_label_names=column_label_names, ) ) else: raise ValueError(ERROR_MESSAGE_CANNOT_COMBINE)
def sql( query: str, index_col: Optional[Union[str, List[str]]] = None, **kwargs: Any, ) -> DataFrame: """ Execute a SQL query and return the result as a pandas-on-Spark DataFrame. This function acts as a standard Python string formatter with understanding the following variable types: * pandas-on-Spark DataFrame * pandas-on-Spark Series * pandas DataFrame * pandas Series * string Parameters ---------- query : str the SQL query index_col : str or list of str, optional Column names to be used in Spark to represent pandas-on-Spark's index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. .. note:: If you want to preserve the index, explicitly use :func:`DataFrame.reset_index`, and pass it to the sql statement with `index_col` parameter. For example, >>> psdf = ps.DataFrame({"A": [1, 2, 3], "B":[4, 5, 6]}, index=['a', 'b', 'c']) >>> new_psdf = psdf.reset_index() >>> ps.sql("SELECT * FROM {new_psdf}", index_col="index", new_psdf=new_psdf) ... # doctest: +NORMALIZE_WHITESPACE A B index a 1 4 b 2 5 c 3 6 For MultiIndex, >>> psdf = ps.DataFrame( ... {"A": [1, 2, 3], "B": [4, 5, 6]}, ... index=pd.MultiIndex.from_tuples( ... [("a", "b"), ("c", "d"), ("e", "f")], names=["index1", "index2"] ... ), ... ) >>> new_psdf = psdf.reset_index() >>> ps.sql( ... "SELECT * FROM {new_psdf}", index_col=["index1", "index2"], new_psdf=new_psdf) ... # doctest: +NORMALIZE_WHITESPACE A B index1 index2 a b 1 4 c d 2 5 e f 3 6 Also note that the index name(s) should be matched to the existing name. kwargs other variables that the user want to set that can be referenced in the query Returns ------- pandas-on-Spark DataFrame Examples -------- Calling a built-in SQL function. >>> ps.sql("SELECT * FROM range(10) where id > 7") id 0 8 1 9 >>> ps.sql("SELECT * FROM range(10) WHERE id > {bound1} AND id < {bound2}", bound1=7, bound2=9) id 0 8 >>> mydf = ps.range(10) >>> x = tuple(range(4)) >>> ps.sql("SELECT {ser} FROM {mydf} WHERE id IN {x}", ser=mydf.id, mydf=mydf, x=x) id 0 0 1 1 2 2 3 3 Mixing pandas-on-Spark and pandas DataFrames in a join operation. Note that the index is dropped. >>> ps.sql(''' ... SELECT m1.a, m2.b ... FROM {table1} m1 INNER JOIN {table2} m2 ... ON m1.key = m2.key ... ORDER BY m1.a, m2.b''', ... table1=ps.DataFrame({"a": [1,2], "key": ["a", "b"]}), ... table2=pd.DataFrame({"b": [3,4,5], "key": ["a", "b", "b"]})) a b 0 1 3 1 2 4 2 2 5 Also, it is possible to query using Series. >>> psdf = ps.DataFrame({"A": [1, 2, 3], "B":[4, 5, 6]}, index=['a', 'b', 'c']) >>> ps.sql("SELECT {mydf.A} FROM {mydf}", mydf=psdf) A 0 1 1 2 2 3 """ if os.environ.get("PYSPARK_PANDAS_SQL_LEGACY") == "1": from pyspark.pandas import sql_processor warnings.warn( "Deprecated in 3.3.0, and the legacy behavior " "will be removed in the future releases.", FutureWarning, ) return sql_processor.sql(query, index_col=index_col, **kwargs) session = default_session() formatter = PandasSQLStringFormatter(session) try: sdf = session.sql(formatter.format(query, **kwargs)) finally: formatter.clear() index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame(spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names))
def transform_batch( self, func: Callable[..., Union[pd.DataFrame, pd.Series]], *args: Any, **kwargs: Any ) -> DataFrameOrSeries: """ Transform chunks with a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas DataFrame given to the function is of a batch used internally. The length of each input and output should be the same. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: the `func` is unable to access to the whole input frame. pandas-on-Spark internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole frame but of the batch internally ... # used. ... def length(pdf) -> ps.DataFrame[int]: ... return pd.DataFrame([len(pdf)] * len(pdf)) ... >>> df = ps.DataFrame({'A': range(1000)}) >>> df.pandas_on_spark.transform_batch(length) # doctest: +SKIP c0 0 83 1 83 2 83 ... .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def plus_one(x) -> ps.DataFrame[int, [float, float]]: ... return x + 1 If the return type is specified, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a NumPy compound type style as below: >>> def plus_one(x) -> ps.DataFrame[("index", int), [("a", float), ("b", float)]]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ps.DataFrame[ ... (pdf.index.name, pdf.index.dtype), zip(pdf.dtypes, pdf.columns)]: ... return x + 1 Parameters ---------- func : function Function to transform each pandas frame. *args Positional arguments to pass to func. **kwargs Keyword arguments to pass to func. Returns ------- DataFrame or Series See Also -------- DataFrame.pandas_on_spark.apply_batch: For row/columnwise operations. Series.pandas_on_spark.transform_batch: transform the search as each pandas chunks. Examples -------- >>> df = ps.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B']) >>> df A B 0 1 2 1 3 4 2 5 6 >>> def plus_one_func(pdf) -> ps.DataFrame[int, [int, int]]: ... return pdf + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) c0 c1 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ps.DataFrame[("index", int), [('A', int), ('B', int)]]: ... return pdf + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) # doctest: +NORMALIZE_WHITESPACE A B index 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ps.Series[int]: ... return pdf.B + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) 0 3 1 5 2 7 dtype: int64 You can also omit the type hints so pandas-on-Spark infers the return schema as below: >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf + 1) A B 0 2 3 1 4 5 2 6 7 >>> (df * -1).pandas_on_spark.transform_batch(abs) A B 0 1 2 1 3 4 2 5 6 Note that you should not transform the index. The index information will not change. >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf.B + 1) 0 3 1 5 2 7 Name: B, dtype: int64 You can also specify extra arguments as below. >>> df.pandas_on_spark.transform_batch(lambda pdf, a, b, c: pdf.B + a + b + c, 1, 2, c=3) 0 8 1 10 2 12 Name: B, dtype: int64 """ from pyspark.pandas.groupby import GroupBy from pyspark.pandas.frame import DataFrame from pyspark.pandas.series import first_series from pyspark import pandas as ps assert callable(func), "the first argument should be a callable function." spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None should_retain_index = should_infer_schema original_func = func func = lambda o: original_func(o, *args, **kwargs) def apply_func(pdf: pd.DataFrame) -> pd.DataFrame: return func(pdf).to_frame() def pandas_series_func( f: Callable[[pd.DataFrame], pd.DataFrame], return_type: DataType ) -> "UserDefinedFunctionLike": ff = f @pandas_udf(returnType=return_type) # type: ignore[call-overload] def udf(pdf: pd.DataFrame) -> pd.Series: return first_series(ff(pdf)) return udf if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. log_advice( "If the type hints is not specified for `transform_batch`, " "it is expensive to infer the data type internally." ) limit = ps.get_option("compute.shortcut_limit") pdf = self._psdf.head(limit + 1)._to_internal_pandas() transformed = func(pdf) if not isinstance(transformed, (pd.DataFrame, pd.Series)): raise ValueError( "The given function should return a frame; however, " "the return type was %s." % type(transformed) ) if len(transformed) != len(pdf): raise ValueError("transform_batch cannot produce aggregated results") psdf_or_psser = ps.from_pandas(transformed) if isinstance(psdf_or_psser, ps.Series): psser = cast(ps.Series, psdf_or_psser) field = psser._internal.data_fields[0].normalize_spark_type() return_schema = StructType([field.struct_field]) output_func = GroupBy._make_pandas_df_builder_func( self._psdf, apply_func, return_schema, retain_index=False ) pudf = pandas_series_func(output_func, return_type=field.spark_type) columns = self._psdf._internal.spark_columns # TODO: Index will be lost in this case. internal = self._psdf._internal.copy( column_labels=psser._internal.column_labels, data_spark_columns=[pudf(F.struct(*columns)).alias(field.name)], data_fields=[field], column_label_names=psser._internal.column_label_names, ) return first_series(DataFrame(internal)) else: psdf = cast(DataFrame, psdf_or_psser) if len(pdf) <= limit: # only do the short cut when it returns a frame to avoid # operations on different dataframes in case of series. return psdf index_fields = [ field.normalize_spark_type() for field in psdf._internal.index_fields ] data_fields = [field.normalize_spark_type() for field in psdf._internal.data_fields] return_schema = StructType( [field.struct_field for field in index_fields + data_fields] ) self_applied: DataFrame = DataFrame(self._psdf._internal.resolved_copy) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=True # type: ignore[arg-type] ) columns = self_applied._internal.spark_columns pudf = pandas_udf( # type: ignore[call-overload] output_func, returnType=return_schema ) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__" ) applied = pudf(F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) return DataFrame( psdf._internal.with_new_sdf( spark_frame=sdf, index_fields=index_fields, data_fields=data_fields ) ) else: return_type = infer_return_type(original_func) is_return_series = isinstance(return_type, SeriesType) is_return_dataframe = isinstance(return_type, DataFrameType) if not is_return_dataframe and not is_return_series: raise TypeError( "The given function should specify a frame or series as its type " "hints; however, the return type was %s." % return_sig ) if is_return_series: field = InternalField( dtype=cast(SeriesType, return_type).dtype, struct_field=StructField( name=SPARK_DEFAULT_SERIES_NAME, dataType=cast(SeriesType, return_type).spark_type, ), ).normalize_spark_type() return_schema = StructType([field.struct_field]) output_func = GroupBy._make_pandas_df_builder_func( self._psdf, apply_func, return_schema, retain_index=False ) pudf = pandas_series_func(output_func, return_type=field.spark_type) columns = self._psdf._internal.spark_columns internal = self._psdf._internal.copy( column_labels=[None], data_spark_columns=[pudf(F.struct(*columns)).alias(field.name)], data_fields=[field], column_label_names=None, ) return first_series(DataFrame(internal)) else: index_fields = cast(DataFrameType, return_type).index_fields index_fields = [index_field.normalize_spark_type() for index_field in index_fields] data_fields = [ field.normalize_spark_type() for field in cast(DataFrameType, return_type).data_fields ] normalized_fields = index_fields + data_fields return_schema = StructType([field.struct_field for field in normalized_fields]) should_retain_index = len(index_fields) > 0 self_applied = DataFrame(self._psdf._internal.resolved_copy) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=should_retain_index # type: ignore[arg-type] ) columns = self_applied._internal.spark_columns pudf = pandas_udf( # type: ignore[call-overload] output_func, returnType=return_schema ) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__" ) applied = pudf(F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) index_spark_columns = None index_names: Optional[List[Optional[Tuple[Any, ...]]]] = None if should_retain_index: index_spark_columns = [ scol_for(sdf, index_field.struct_field.name) for index_field in index_fields ] if not any( [ SPARK_INDEX_NAME_PATTERN.match(index_field.struct_field.name) for index_field in index_fields ] ): index_names = [ (index_field.struct_field.name,) for index_field in index_fields ] internal = InternalFrame( spark_frame=sdf, index_names=index_names, index_spark_columns=index_spark_columns, index_fields=index_fields, data_fields=data_fields, ) return DataFrame(internal)
def attach_id_column(self, id_type: str, column: Name) -> "DataFrame": """ Attach a column to be used as identifier of rows similar to the default index. See also `Default Index type <https://koalas.readthedocs.io/en/latest/user_guide/options.html#default-index-type>`_. Parameters ---------- id_type : string The id type. - 'sequence' : a sequence that increases one by one. .. note:: this uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. - 'distributed-sequence' : a sequence that increases one by one, by group-by and group-map approach in a distributed manner. - 'distributed' : a monotonically increasing sequence simply by using PySpark’s monotonically_increasing_id function in a fully distributed manner. column : string or tuple of string The column name. Returns ------- DataFrame The DataFrame attached the column. Examples -------- >>> df = ps.DataFrame({"x": ['a', 'b', 'c']}) >>> df.pandas_on_spark.attach_id_column(id_type="sequence", column="id") x id 0 a 0 1 b 1 2 c 2 >>> df.pandas_on_spark.attach_id_column(id_type="distributed-sequence", column=0) x 0 0 a 0 1 b 1 2 c 2 >>> df.pandas_on_spark.attach_id_column(id_type="distributed", column=0.0) ... # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE x 0.0 0 a ... 1 b ... 2 c ... For multi-index columns: >>> df = ps.DataFrame({("x", "y"): ['a', 'b', 'c']}) >>> df.pandas_on_spark.attach_id_column(id_type="sequence", column=("id-x", "id-y")) x id-x y id-y 0 a 0 1 b 1 2 c 2 >>> df.pandas_on_spark.attach_id_column(id_type="distributed-sequence", column=(0, 1.0)) x 0 y 1.0 0 a 0 1 b 1 2 c 2 """ from pyspark.pandas.frame import DataFrame if id_type == "sequence": attach_func = InternalFrame.attach_sequence_column elif id_type == "distributed-sequence": attach_func = InternalFrame.attach_distributed_sequence_column elif id_type == "distributed": attach_func = InternalFrame.attach_distributed_column else: raise ValueError( "id_type should be one of 'sequence', 'distributed-sequence' and 'distributed'" ) assert is_name_like_value(column, allow_none=False), column if not is_name_like_tuple(column): column = (column,) internal = self._psdf._internal if len(column) != internal.column_labels_level: raise ValueError( "The given column `{}` must be the same length as the existing columns.".format( column ) ) elif column in internal.column_labels: raise ValueError( "The given column `{}` already exists.".format(name_like_string(column)) ) # Make sure the underlying Spark column names are the form of # `name_like_string(column_label)`. sdf = internal.spark_frame.select( [ scol.alias(SPARK_INDEX_NAME_FORMAT(i)) for i, scol in enumerate(internal.index_spark_columns) ] + [ scol.alias(name_like_string(label)) for scol, label in zip(internal.data_spark_columns, internal.column_labels) ] ) sdf = attach_func(sdf, name_like_string(column)) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, SPARK_INDEX_NAME_FORMAT(i)) for i in range(internal.index_level) ], index_names=internal.index_names, index_fields=internal.index_fields, column_labels=internal.column_labels + [column], data_spark_columns=( [scol_for(sdf, name_like_string(label)) for label in internal.column_labels] + [scol_for(sdf, name_like_string(column))] ), data_fields=internal.data_fields + [ InternalField.from_struct_field( StructField(name_like_string(column), LongType(), nullable=False) ) ], column_label_names=internal.column_label_names, ).resolved_copy )
def eq(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, (list, tuple)): from pyspark.pandas.series import first_series, scol_for from pyspark.pandas.frame import DataFrame from pyspark.pandas.internal import NATURAL_ORDER_COLUMN_NAME, InternalField len_right = len(right) if len(left) != len(right): raise ValueError("Lengths must be equal") sdf = left._internal.spark_frame structed_scol = F.struct( sdf[NATURAL_ORDER_COLUMN_NAME], *left._internal.index_spark_columns, left.spark.column, ) # The size of the list is expected to be small. collected_structed_scol = F.collect_list(structed_scol) # Sort the array by NATURAL_ORDER_COLUMN so that we can guarantee the order. collected_structed_scol = F.array_sort(collected_structed_scol) right_values_scol = F.array(*(F.lit(x) for x in right)) index_scol_names = left._internal.index_spark_column_names scol_name = left._internal.spark_column_name_for( left._internal.column_labels[0]) # Compare the values of left and right by using zip_with function. cond = F.zip_with( collected_structed_scol, right_values_scol, lambda x, y: F.struct( *[ x[index_scol_name].alias(index_scol_name) for index_scol_name in index_scol_names ], F.when(x[scol_name].isNull() | y.isNull(), False). otherwise(x[scol_name] == y, ).alias(scol_name), ), ).alias(scol_name) # 1. `sdf_new` here looks like the below (the first field of each set is Index): # +----------------------------------------------------------+ # |0 | # +----------------------------------------------------------+ # |[{0, false}, {1, true}, {2, false}, {3, true}, {4, false}]| # +----------------------------------------------------------+ sdf_new = sdf.select(cond) # 2. `sdf_new` after the explode looks like the below: # +----------+ # | col| # +----------+ # |{0, false}| # | {1, true}| # |{2, false}| # | {3, true}| # |{4, false}| # +----------+ sdf_new = sdf_new.select(F.explode(scol_name)) # 3. Here, the final `sdf_new` looks like the below: # +-----------------+-----+ # |__index_level_0__| 0| # +-----------------+-----+ # | 0|false| # | 1| true| # | 2|false| # | 3| true| # | 4|false| # +-----------------+-----+ sdf_new = sdf_new.select("col.*") index_spark_columns = [ scol_for(sdf_new, index_scol_name) for index_scol_name in index_scol_names ] data_spark_columns = [scol_for(sdf_new, scol_name)] internal = left._internal.copy( spark_frame=sdf_new, index_spark_columns=index_spark_columns, data_spark_columns=data_spark_columns, index_fields=[ InternalField.from_struct_field(index_field) for index_field in sdf_new.select( index_spark_columns).schema.fields ], data_fields=[ InternalField.from_struct_field( sdf_new.select(data_spark_columns).schema.fields[0]) ], ) return first_series(DataFrame(internal)) else: from pyspark.pandas.base import column_op return column_op(Column.__eq__)(left, right)
def apply_batch( self, func: Callable[..., pd.DataFrame], args: Tuple = (), **kwds: Any ) -> "DataFrame": """ Apply a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas DataFrame given to the function is of a batch used internally. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: the `func` is unable to access to the whole input frame. pandas-on-Spark internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole frame but of the batch internally ... # used. ... def length(pdf) -> ps.DataFrame[int, [int]]: ... return pd.DataFrame([len(pdf)]) ... >>> df = ps.DataFrame({'A': range(1000)}) >>> df.pandas_on_spark.apply_batch(length) # doctest: +SKIP c0 0 83 1 83 2 83 ... 10 83 11 83 .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def plus_one(x) -> ps.DataFrame[int, [float, float]]: ... return x + 1 If the return type is specified, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a NumPy compound type style as below: >>> def plus_one(x) -> ps.DataFrame[("index", int), [("a", float), ("b", float)]]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ps.DataFrame[ ... (pdf.index.name, pdf.index.dtype), zip(pdf.dtypes, pdf.columns)]: ... return x + 1 Parameters ---------- func : function Function to apply to each pandas frame. args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- DataFrame See Also -------- DataFrame.apply: For row/columnwise operations. DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Series.pandas_on_spark.transform_batch: transform the search as each pandas chunks. Examples -------- >>> df = ps.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B']) >>> df A B 0 1 2 1 3 4 2 5 6 >>> def query_func(pdf) -> ps.DataFrame[int, [int, int]]: ... return pdf.query('A == 1') >>> df.pandas_on_spark.apply_batch(query_func) c0 c1 0 1 2 >>> def query_func(pdf) -> ps.DataFrame[("idx", int), [("A", int), ("B", int)]]: ... return pdf.query('A == 1') >>> df.pandas_on_spark.apply_batch(query_func) # doctest: +NORMALIZE_WHITESPACE A B idx 0 1 2 You can also omit the type hints so pandas-on-Spark infers the return schema as below: >>> df.pandas_on_spark.apply_batch(lambda pdf: pdf.query('A == 1')) A B 0 1 2 You can also specify extra arguments. >>> def calculation(pdf, y, z) -> ps.DataFrame[int, [int, int]]: ... return pdf ** y + z >>> df.pandas_on_spark.apply_batch(calculation, args=(10,), z=20) c0 c1 0 21 1044 1 59069 1048596 2 9765645 60466196 You can also use ``np.ufunc`` and built-in functions as input. >>> df.pandas_on_spark.apply_batch(np.add, args=(10,)) A B 0 11 12 1 13 14 2 15 16 >>> (df * -1).pandas_on_spark.apply_batch(abs) A B 0 1 2 1 3 4 2 5 6 """ # TODO: codes here partially duplicate `DataFrame.apply`. Can we deduplicate? from pyspark.pandas.groupby import GroupBy from pyspark.pandas.frame import DataFrame from pyspark import pandas as ps if not isinstance(func, FunctionType): assert callable(func), "the first argument should be a callable function." f = func func = lambda *args, **kwargs: f(*args, **kwargs) spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None original_func = func func = lambda o: original_func(o, *args, **kwds) self_applied: DataFrame = DataFrame(self._psdf._internal.resolved_copy) if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. log_advice( "If the type hints is not specified for `apply_batch`, " "it is expensive to infer the data type internally." ) limit = ps.get_option("compute.shortcut_limit") pdf = self_applied.head(limit + 1)._to_internal_pandas() applied = func(pdf) if not isinstance(applied, pd.DataFrame): raise ValueError( "The given function should return a frame; however, " "the return type was %s." % type(applied) ) psdf: DataFrame = DataFrame(applied) if len(pdf) <= limit: return psdf index_fields = [field.normalize_spark_type() for field in psdf._internal.index_fields] data_fields = [field.normalize_spark_type() for field in psdf._internal.data_fields] return_schema = StructType([field.struct_field for field in index_fields + data_fields]) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=True ) sdf = self_applied._internal.spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema ) # If schema is inferred, we can restore indexes too. internal = psdf._internal.with_new_sdf( spark_frame=sdf, index_fields=index_fields, data_fields=data_fields ) else: return_type = infer_return_type(original_func) is_return_dataframe = isinstance(return_type, DataFrameType) if not is_return_dataframe: raise TypeError( "The given function should specify a frame as its type " "hints; however, the return type was %s." % return_sig ) index_fields = cast(DataFrameType, return_type).index_fields should_retain_index = len(index_fields) > 0 return_schema = cast(DataFrameType, return_type).spark_type output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=should_retain_index ) sdf = self_applied._internal.to_internal_spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema ) index_spark_columns = None index_names: Optional[List[Optional[Tuple[Any, ...]]]] = None if should_retain_index: index_spark_columns = [ scol_for(sdf, index_field.struct_field.name) for index_field in index_fields ] if not any( [ SPARK_INDEX_NAME_PATTERN.match(index_field.struct_field.name) for index_field in index_fields ] ): index_names = [(index_field.struct_field.name,) for index_field in index_fields] internal = InternalFrame( spark_frame=sdf, index_names=index_names, index_spark_columns=index_spark_columns, index_fields=index_fields, data_fields=cast(DataFrameType, return_type).data_fields, ) return DataFrame(internal)
def transform_batch(self, func, *args, **kwargs) -> Union["DataFrame", "Series"]: """ Transform chunks with a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas DataFrame given to the function is of a batch used internally. The length of each input and output should be the same. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: the `func` is unable to access to the whole input frame. pandas-on-Spark internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole frame but of the batch internally ... # used. ... def length(pdf) -> ps.DataFrame[int]: ... return pd.DataFrame([len(pdf)] * len(pdf)) ... >>> df = ps.DataFrame({'A': range(1000)}) >>> df.pandas_on_spark.transform_batch(length) # doctest: +SKIP c0 0 83 1 83 2 83 ... .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def plus_one(x) -> ps.DataFrame[float, float]: ... return x + 1 If the return type is specified, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a pandas friendly style as below: >>> def plus_one(x) -> ps.DataFrame['a': float, 'b': float]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ps.DataFrame[zip(pdf.dtypes, pdf.columns)]: ... return x + 1 When the given function returns DataFrame and has the return type annotated, the original index of the DataFrame will be lost and then a default index will be attached to the result. Please be careful about configuring the default index. See also `Default Index Type <https://koalas.readthedocs.io/en/latest/user_guide/options.html#default-index-type>`_. Parameters ---------- func : function Function to transform each pandas frame. *args Positional arguments to pass to func. **kwargs Keyword arguments to pass to func. Returns ------- DataFrame or Series See Also -------- DataFrame.pandas_on_spark.apply_batch: For row/columnwise operations. Series.pandas_on_spark.transform_batch: transform the search as each pandas chunks. Examples -------- >>> df = ps.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B']) >>> df A B 0 1 2 1 3 4 2 5 6 >>> def plus_one_func(pdf) -> ps.DataFrame[int, int]: ... return pdf + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) c0 c1 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ps.DataFrame['A': int, 'B': int]: ... return pdf + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) A B 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ps.Series[int]: ... return pdf.B + 1 >>> df.pandas_on_spark.transform_batch(plus_one_func) 0 3 1 5 2 7 dtype: int64 You can also omit the type hints so pandas-on-Spark infers the return schema as below: >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf + 1) A B 0 2 3 1 4 5 2 6 7 >>> (df * -1).pandas_on_spark.transform_batch(abs) A B 0 1 2 1 3 4 2 5 6 Note that you should not transform the index. The index information will not change. >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf.B + 1) 0 3 1 5 2 7 Name: B, dtype: int64 You can also specify extra arguments as below. >>> df.pandas_on_spark.transform_batch(lambda pdf, a, b, c: pdf.B + a + b + c, 1, 2, c=3) 0 8 1 10 2 12 Name: B, dtype: int64 """ from pyspark.pandas.groupby import GroupBy from pyspark.pandas.frame import DataFrame from pyspark.pandas.series import first_series from pyspark import pandas as ps assert callable(func), "the first argument should be a callable function." spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None original_func = func func = lambda o: original_func(o, *args, **kwargs) names = self._psdf._internal.to_internal_spark_frame.schema.names def pandas_concat(series): # The input can only be a DataFrame for struct from Spark 3.0. # This works around to make the input as a frame. See SPARK-27240 pdf = pd.concat(series, axis=1) pdf.columns = names return pdf def apply_func(pdf): return func(pdf).to_frame() def pandas_extract(pdf, name): # This is for output to work around a DataFrame for struct # from Spark 3.0. See SPARK-23836 return pdf[name] def pandas_series_func(f): ff = f return lambda *series: first_series(ff(*series)) def pandas_frame_func(f, field_name): ff = f return lambda *series: pandas_extract(ff(pandas_concat(series)), field_name) if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = ps.get_option("compute.shortcut_limit") pdf = self._psdf.head(limit + 1)._to_internal_pandas() transformed = func(pdf) if not isinstance(transformed, (pd.DataFrame, pd.Series)): raise ValueError( "The given function should return a frame; however, " "the return type was %s." % type(transformed) ) if len(transformed) != len(pdf): raise ValueError("transform_batch cannot produce aggregated results") psdf_or_psser = ps.from_pandas(transformed) if isinstance(psdf_or_psser, ps.Series): psser = cast(ps.Series, psdf_or_psser) spark_return_type = force_decimal_precision_scale( as_nullable_spark_type(psser.spark.data_type) ) return_schema = StructType( [StructField(SPARK_DEFAULT_SERIES_NAME, spark_return_type)] ) output_func = GroupBy._make_pandas_df_builder_func( self._psdf, apply_func, return_schema, retain_index=False ) pudf = pandas_udf(returnType=spark_return_type, functionType=PandasUDFType.SCALAR)( pandas_series_func(output_func) ) columns = self._psdf._internal.spark_columns # TODO: Index will be lost in this case. internal = self._psdf._internal.copy( column_labels=psser._internal.column_labels, data_spark_columns=[ pudf(F.struct(*columns)).alias(psser._internal.data_spark_column_names[0]) ], data_dtypes=psser._internal.data_dtypes, column_label_names=psser._internal.column_label_names, ) return first_series(DataFrame(internal)) else: psdf = cast(DataFrame, psdf_or_psser) if len(pdf) <= limit: # only do the short cut when it returns a frame to avoid # operations on different dataframes in case of series. return psdf # Force nullability. return_schema = force_decimal_precision_scale( as_nullable_spark_type(psdf._internal.to_internal_spark_frame.schema) ) self_applied = DataFrame(self._psdf._internal.resolved_copy) # type: DataFrame output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=True ) columns = self_applied._internal.spark_columns pudf = pandas_udf(returnType=return_schema, functionType=PandasUDFType.SCALAR)( output_func ) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__" ) applied = pudf(F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) return DataFrame(psdf._internal.with_new_sdf(sdf)) else: return_type = infer_return_type(original_func) is_return_series = isinstance(return_type, SeriesType) is_return_dataframe = isinstance(return_type, DataFrameType) if not is_return_dataframe and not is_return_series: raise TypeError( "The given function should specify a frame or series as its type " "hints; however, the return type was %s." % return_sig ) if is_return_series: spark_return_type = force_decimal_precision_scale( as_nullable_spark_type(cast(SeriesType, return_type).spark_type) ) return_schema = StructType( [StructField(SPARK_DEFAULT_SERIES_NAME, spark_return_type)] ) output_func = GroupBy._make_pandas_df_builder_func( self._psdf, apply_func, return_schema, retain_index=False ) pudf = pandas_udf(returnType=spark_return_type, functionType=PandasUDFType.SCALAR)( pandas_series_func(output_func) ) columns = self._psdf._internal.spark_columns internal = self._psdf._internal.copy( column_labels=[None], data_spark_columns=[pudf(F.struct(*columns)).alias(SPARK_DEFAULT_SERIES_NAME)], data_dtypes=[cast(SeriesType, return_type).dtype], column_label_names=None, ) return first_series(DataFrame(internal)) else: return_schema = cast(DataFrameType, return_type).spark_type self_applied = DataFrame(self._psdf._internal.resolved_copy) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=False ) columns = self_applied._internal.spark_columns pudf = pandas_udf(returnType=return_schema, functionType=PandasUDFType.SCALAR)( output_func ) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__" ) applied = pudf(F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) internal = InternalFrame( spark_frame=sdf, index_spark_columns=None, data_dtypes=cast(DataFrameType, return_type).dtypes, ) return DataFrame(internal)
def drop(self, codes: List[Any], level: Optional[Union[int, Name]] = None) -> "MultiIndex": """ Make new MultiIndex with passed list of labels deleted Parameters ---------- codes : array-like Must be a list of tuples level : int or level name, default None Returns ------- dropped : MultiIndex Examples -------- >>> index = ps.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> index # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z')], ) >>> index.drop(['a']) # doctest: +SKIP MultiIndex([('b', 'y'), ('c', 'z')], ) >>> index.drop(['x', 'y'], level=1) # doctest: +SKIP MultiIndex([('c', 'z')], ) """ internal = self._internal.resolved_copy sdf = internal.spark_frame index_scols = internal.index_spark_columns if level is None: scol = index_scols[0] elif isinstance(level, int): scol = index_scols[level] else: scol = None for index_spark_column, index_name in zip( internal.index_spark_columns, internal.index_names): if not isinstance(level, tuple): level = (level, ) if level == index_name: if scol is not None: raise ValueError( "The name {} occurs multiple times, use a level number" .format(name_like_string(level))) scol = index_spark_column if scol is None: raise KeyError("Level {} not found".format( name_like_string(level))) sdf = sdf[~scol.isin(codes)] internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in internal.index_spark_column_names ], index_names=internal.index_names, index_fields=internal.index_fields, column_labels=[], data_spark_columns=[], data_fields=[], ) return cast(MultiIndex, DataFrame(internal).index)
def symmetric_difference( # type: ignore[override] self, other: Index, result_name: Optional[List[Name]] = None, sort: Optional[bool] = None, ) -> "MultiIndex": """ Compute the symmetric difference of two MultiIndex objects. Parameters ---------- other : Index or array-like result_name : list sort : True or None, default None Whether to sort the resulting index. * True : Attempt to sort the result. * None : Do not sort the result. Returns ------- symmetric_difference : MiltiIndex Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> midx1 = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 0, 0, 0, 1, 2, 0, 1, 2]]) >>> midx2 = pd.MultiIndex([['pandas-on-Spark', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 0, 0, 0, 1, 2, 0, 1, 2]]) >>> s1 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx1) >>> s2 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx2) >>> s1.index.symmetric_difference(s2.index) # doctest: +SKIP MultiIndex([('pandas-on-Spark', 'speed'), ( 'lama', 'speed')], ) You can set names of result Index. >>> s1.index.symmetric_difference(s2.index, result_name=['a', 'b']) # doctest: +SKIP MultiIndex([('pandas-on-Spark', 'speed'), ( 'lama', 'speed')], names=['a', 'b']) You can set sort to `True`, if you want to sort the resulting index. >>> s1.index.symmetric_difference(s2.index, sort=True) # doctest: +SKIP MultiIndex([('pandas-on-Spark', 'speed'), ( 'lama', 'speed')], ) You can also use the ``^`` operator: >>> s1.index ^ s2.index # doctest: +SKIP MultiIndex([('pandas-on-Spark', 'speed'), ( 'lama', 'speed')], ) """ if type(self) != type(other): raise NotImplementedError( "Doesn't support symmetric_difference between Index & MultiIndex for now" ) sdf_self = self._psdf._internal.spark_frame.select( self._internal.index_spark_columns) sdf_other = other._psdf._internal.spark_frame.select( other._internal.index_spark_columns) sdf_symdiff = sdf_self.union(sdf_other).subtract( sdf_self.intersect(sdf_other)) if sort: sdf_symdiff = sdf_symdiff.sort(*self._internal.index_spark_columns) internal = InternalFrame( spark_frame=sdf_symdiff, index_spark_columns=[ scol_for(sdf_symdiff, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_fields=self._internal.index_fields, ) result = cast(MultiIndex, DataFrame(internal).index) if result_name: result.names = result_name return result
def swaplevel(self, i: int = -2, j: int = -1) -> "MultiIndex": """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int, str, default -2 First level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. j : int, str, default -1 Second level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. Returns ------- MultiIndex A new MultiIndex. Examples -------- >>> midx = ps.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names = ['word', 'number']) >>> midx # doctest: +SKIP MultiIndex([('a', 1), ('b', 2)], names=['word', 'number']) >>> midx.swaplevel(0, 1) # doctest: +SKIP MultiIndex([(1, 'a'), (2, 'b')], names=['number', 'word']) >>> midx.swaplevel('number', 'word') # doctest: +SKIP MultiIndex([(1, 'a'), (2, 'b')], names=['number', 'word']) """ for index in (i, j): if not isinstance(index, int) and index not in self.names: raise KeyError("Level %s not found" % index) i = i if isinstance(i, int) else self.names.index(i) j = j if isinstance(j, int) else self.names.index(j) for index in (i, j): if index >= len(self.names) or index < -len(self.names): raise IndexError("Too many levels: Index has only %s levels, " "%s is not a valid level number" % (len(self.names), index)) index_map = list( zip( self._internal.index_spark_columns, self._internal.index_names, self._internal.index_fields, )) index_map[i], index_map[j] = index_map[j], index_map[i] index_spark_columns, index_names, index_fields = zip(*index_map) internal = self._internal.copy( index_spark_columns=list(index_spark_columns), index_names=list(index_names), index_fields=list(index_fields), column_labels=[], data_spark_columns=[], data_fields=[], ) return cast(MultiIndex, DataFrame(internal).index)
def insert(self, loc: int, item: Any) -> Index: """ Make new MultiIndex inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : MultiIndex Examples -------- >>> psmidx = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) >>> psmidx.insert(3, ("h", "j")) # doctest: +SKIP MultiIndex([('a', 'x'), ('b', 'y'), ('c', 'z'), ('h', 'j')], ) For negative values >>> psmidx.insert(-2, ("h", "j")) # doctest: +SKIP MultiIndex([('a', 'x'), ('h', 'j'), ('b', 'y'), ('c', 'z')], ) """ length = len(self) if loc < 0: loc = loc + length if loc < 0: raise IndexError( "index {} is out of bounds for axis 0 with size {}".format( (loc - length), length)) else: if loc > length: raise IndexError( "index {} is out of bounds for axis 0 with size {}".format( loc, length)) index_name = [ (name, ) for name in self._internal.index_spark_column_names ] # type: List[Label] sdf_before = self.to_frame(name=index_name)[:loc].to_spark() sdf_middle = Index([item]).to_frame(name=index_name).to_spark() sdf_after = self.to_frame(name=index_name)[loc:].to_spark() sdf = sdf_before.union(sdf_middle).union(sdf_after) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in self._internal.index_spark_column_names ], index_names=self._internal.index_names, index_fields=[ InternalField(field.dtype) for field in self._internal.index_fields ], ) return DataFrame(internal).index