def _applyToMatrix(self, A): """ Returns (preconditioning matrix, resulting matrix) """ return precon.jacobi(A), A.to_csr()
self.shape = A.shape n = self.shape[0] self.dinv = np.zeros(n, 'd') for i in xrange(n): self.dinv[i] = 1.0 / A[i,i] def precon(self, x, y): np.multiply(x, self.dinv, y) def resid(A, b, x): r = x.copy() A.matvec(x, r) r = b - r return math.sqrt(np.dot(r, r)) K_diag = diag_prec(A) K_jac = precon.jacobi(A, 1.0, 1) K_ssor = precon.ssor(A, 1.0, 1) # K_ilu = precon.ilutp(L) n = L.shape[0]; b = np.arange(n).astype(np.Float) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000) print 'pcg, K_none: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000, K_diag) print 'pcg, K_diag: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000, K_jac) print 'pcg, K_jac: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd')
for i in xrange(n): self.dinv[i] = 1.0 / A[i, i] def precon(self, x, y): np.multiply(x, self.dinv, y) def resid(A, b, x): r = x.copy() A.matvec(x, r) r = b - r return math.sqrt(np.dot(r, r)) K_diag = diag_prec(A) K_jac = precon.jacobi(A, 1.0, 1) K_ssor = precon.ssor(A, 1.0, 1) # K_ilu = precon.ilutp(L) n = L.shape[0] b = np.arange(n).astype(np.Float) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000) print 'pcg, K_none: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000, K_diag) print 'pcg, K_diag: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd') info, iter, relres = pcg(A, b, x, 1e-6, 1000, K_jac) print 'pcg, K_jac: ', info, iter, relres, resid(A, b, x) x = np.zeros(n, 'd')
def test_pcg(ProblemList, tol=1.0e-6): if len(ProblemList) == 0: usage() sys.exit(1) header1 = '%10s %6s %6s ' % ('Name', 'n', 'nnz') header2 = '%6s %8s %8s %4s %6s %6s\n' % ('iter','relres','error','info','form M','solve') dheader1 = '%10s %6d %6d ' dheader2 = '%6d %8.1e %8.1e %4d %6.2f %6.2f\n' lhead1 = len(header1) lhead2 = len(header2) lhead = lhead1 + lhead2 sys.stderr.write('-' * lhead + '\n') sys.stderr.write(header1) sys.stderr.write(header2) sys.stderr.write('-' * lhead + '\n') # Record timings for each preconditioner timings = { 'None' : [], 'Diagonal' : [], 'SSOR' : [] } for problem in ProblemList: A = spmatrix.ll_mat_from_mtx(problem) (m, n) = A.shape if m != n: break prob = os.path.basename(problem) if prob[-4:] == '.mtx': prob = prob[:-4] # Right-hand side is Ae e = np.ones(n, 'd') b = np.empty(n, 'd') A.matvec(e, b) sys.stdout.write(dheader1 % (prob, n, A.nnz)) # No preconditioner x = np.zeros(n, 'd') t = cputime() info, iter, relres = pcg(A, b, x, tol, 2*n) t_noprec = cputime() - t err = np.linalg.norm(x-e, ord=np.Inf) sys.stdout.write(dheader2 % (iter, relres, err, info, 0.0, t_noprec)) timings['None'].append(t_noprec) # Diagonal preconditioner x = np.zeros(n, 'd') t = cputime() M = precon.jacobi(A, 1.0, 1) t_getM_diag = cputime() - t t = cputime() info, iter, relres = pcg(A, b, x, tol, 2*n, M) t_diag = cputime() - t err = np.linalg.norm(x-e, ord=np.Inf) sys.stdout.write(lhead1 * ' ') sys.stdout.write(dheader2 % (iter,relres,err,info,t_getM_diag,t_diag)) timings['Diagonal'].append(t_diag) # SSOR preconditioner # It appears that steps=1 and omega=1.0 are nearly optimal in all cases x = np.zeros(n, 'd') t = cputime() M = precon.ssor(A.to_sss(), 1.0, 1) t_getM_ssor = cputime() - t t = cputime() info, iter, relres = pcg(A, b, x, tol, 2*n, M) t_ssor = cputime() - t err = np.linalg.norm(x-e, ord=np.Inf) sys.stdout.write(lhead1 * ' ') sys.stdout.write(dheader2 % (iter,relres,err,info,t_getM_ssor,t_ssor)) timings['SSOR'].append(t_ssor) sys.stderr.write('-' * lhead + '\n') return timings